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A b s t r a c t .  With ~(p), p > 0 the Laplace-Stieltjes transform of some infinitely 
divisible probability distribution, we consider the solutions to the functional equation 
~(p) = e-P~I]m=l~'Y~(cip) for some m ~ 1, ci > 0, Vi > 0, i = 1 , . . . , m ,  ~ E ~. We 
supply its complete solutions in terms of semistable distributions (the ones obtained 
when m -- 1). We then show how to obtain these solutions as limit laws (r T co) 
of normalized Poisson sums of iid samples when the Poisson intensity A(r) grows 
geometrically with r. 

Key words and phrases: Stable and semistable laws, functional equation, limit laws, 
selfsimilarity, generalized semistability. 

1. Introduction 

The origin of the problem is motivated by computing the class of non-degenerate in- 
finitely divisible (ID) random variables bounded below whose Laplace-Stieltjes transform 
(LST) satisfies the functional equation 

m 

(1.1) ~(P) = l-I ~(cip) 
i=1 

for some m > 1, ci > 0, Vi > 0, i = 1 , . . . ,  m.  These  m a y  be considered as an extended 
class of one-sided semis table  dis t r ibut ions which were in t roduced by L@vy (1937) (i.e. as 
those satisfying ~(p)  = p~(cp) which is (1.1) wi th  m = 1). In the  l i terature,  some related 
contr ibut ions  to this field can be found in R a m a c h a n d r a n  and  Rao  (1968), Shimizu 
(1978), for example.  More  specifically, in Shimizu (1978), a funct ional  equat ion of this 
type  was considered for character is t ic  functions and with  the  condi t ion max  Icil < 1; 
here, nei ther  posi t ivi ty  of the  r a n d o m  variable involved nor of the  coefficients ci > 0, 
i = 1 , . . . ,  m were needed and  m < c~ was not  even assumed; under  these hypotheses,  
the  infinite divisible charac te r  of the solutions was obta ined  direct ly f rom the functional  
equat ion.  This  cons t i tu ted  an u l t imate  general izat ion of a special case of known results. 

One-sided semis table  laws (or r andom  variables)  are identified wi th  the ones of ID 
laws whose LST satisfies a functional  equat ion of the  form 

(1.2) ~(p) = e-PZ~ ~ (cp) 

817 
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for some c > 0, fl C N, 3' > 1. This functional equation was first introduced by L6vy 
(1937) when ~ is a characteristic function, leading to all semistable laws (see Lukacs 
(1983), p. 45 for a survey on this point and Sato (1999) for a recent monograph).  In the 
sequel, we shall limit ourselves tacit ly to one-sided semistable laws. 

A class of distributions which contains the ones of stable (and semistable) distribu- 
tions is then introduced; we call them generalized semistable (GSS) distributions. They 
const i tute a sub-class of infinitely divisible distributions which are defined as the fixed 
point of the t ransformation on their LST displayed in (1.1). The aim of the manuscript is 
thus to give a complete solution to this equation in connection with semistable laws. An- 
other objective is to discuss the very particular statistical s tatus and properties which 
such distributions seem to entail. On this basis, these new models can be seen, in 
a natural  way, as limit laws under a random geometric growth condition. Convergence 
Theorems established can be compared with the ones of Grinevich and Khokhlov (1993). 

This work is then organized as follows. 
In Section 2, the main features of semistable distributions are recalled (see Grinevich 

and Khokhlov (1993), Huillet et al. (2001), Kruglov (1972), L6vy (1937), Lukacs (1983), 
Pillai (1971), Sato (1999), Shimizu (1970) and the bibliography therein). These consti- 
tu te  a first-step extension to the one-sided L6vy-stable distribution in tha t  their scale 
parameters  are no longer constant  but rather allowed to vary in a log-periodic fashion. 
The occurrence of semistable distributions as limit laws will briefly be recalled. 

In Section 3, we shall exhibit the strong connections tha t  exist between semistable 
and GSS distributions as solutions to (1.1). Central  to the solution of this functional 
equation is the structure function 

m 

T(q) = E "Ticq' q E R 
i=1  

and the number ISll, with S1 = {c~ C (0,1) : ~-(ct) = 1}. It will be shown tha t  the 
values of a such tha t  ~-(a) = 1 are the characteristic exponents of one-sided c~-semistable 
distributions appearing in the solutions of (1.1). So, the values of a _> 1 for which 
T(a) = 1 have to be ruled out, as is done in S1. 

More precisely, if ISll = 1 and if ci = c ~ ,  c c (0, 1), ri c Z, one recovers the 
semistable class extending and including the one-sided stable distributions. 

If IS1[ = 2, one gets the full generalized semistable distributions. It is shown tha t  
the LST of such distributions is representable as the product  of two semistable LSTs. 
Precise s tatements  are summarized in Theorem 3.1 which follows from two preliminary 
results explained in Lemmas 3.1 and 3.2. 

In Subsection 3.2, we shall show tha t  it also makes sense to consider a random 
variable concentrated on [x, oc) for some x > - o c  whose LST satisfies the functional 
equation 

= e-p  H 
i = l  

for some m > 1, ci > 0, 7i > 0, i = 1 , . . .  ,m,  /3 E l~. These can be obtained by shifting 
the solutions of the functional equation (1.1) by x C R, with x = / 3 / ( 1  - ~-~i~1 7ici). 

Some connections of GSS distributions with the notion of semi-selfsimilarity of in- 
duced processes are briefly emphasized in Subsection 3.3. 
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In Section 4, we finally show tha t  GSS distributions may be seen as limit laws for 
some renormalized sum of an lid sample, when the number of terms in the sum grows 
geometrically with some parameter  r. We proceed progressively in two steps. A primary 
deterministic i l lustration of geometrical growth is when the sample size n(r) ~,, K J  
for some constants K > 0, p > 1, when this number is generated by a deterministic 
version of the Crump and Mode (1968a, 1968b) branching process; the limiting laws in 
this case are identified with a particular generalized semistable description of semistable 
distributions, in accordance with known results from the literature. Main result on this 
aspect is Proposition 4.1. The full geometrical growth condition required to grasp all 
GSS distributions as limit laws must be random: the size N(r)  of the sample should be 
Poisson distributed whose intensity A(r) := E[N(r)]  has geometric growth. The main 
result is displayed in Proposit ion 4.2. 

2. Semistable laws 

We first briefly recall some results on semistable distributions. 

2.1 Strictly semistable law 
Let p > 1 and c E (0, 1). First, consider the class of ID random variable X with 

support  [0, ~ )  whose LST satisfies the simpler functional equation 

(2 .1)  (p) = 

These variables will be identified with the so-called strictly semistable variables. Accord- 
ing to L6vy-Khintchine formula (see Feller (1971), p. 450, Bertoin (1996)) there exists 

a measure 7r on ]0,+cx~[ with f : ~  A x)rc(dx) < c~ such tha t  the Laplace-Stieltjes 
t ransform (LST) of X satisfy 

{/0 } (2.2) q)x(P) := E e - p X  = exp - (1 - e-PX)zc(dx) . 

~r is called the L~vy measure and letting 7r(x) :-- -Tr(]x, +e~[) we obtain the L~vy spectral 
function. 

The solutions of (2.1) are well-known to be the class of ID random variables with 
spectral function 

(2.3) 7r(x) = - x - ~ s ( l o g x ) ,  x �9 (0 ,+co) ,  

where 
(i) the constant  a := log c p necessarily belongs to the interval (0, 1), 

(ii) s(x) is a non-negative function such tha t  s(x) := e ~(x) ,  for some right-contin- 
uous bounded periodic function u with period - log c, satisfying the additional condition: 
x - , ( x )  is non-decreasing. 

Turning back to the solution of (2.1), from (2.2) and (2.3), we obtain (see Huillet ct 
al. (2001)) 

(2.4) ~ x  (P) = exp{ - p ~  g(log p) } 

where ~ is a non-negative periodic function with period - log c, the Fourier series expan- 
sion of which being easily obtained from the one of the function s which appears in the 
L6vy spectral function (2.3). 
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Remark 2.1. If in (2.3) the scale function s(x) = s > 0, a constant,  we recover 
the L~vy stable laws. By the expression (2.4) the function ~ is also constant,  with 

:= s F ( 1 - a )  (see Uchaikin and Zolotarev (1999) for a recent overview of these subjects). 

2.2 Shifted semistable law 
Let x G I~; consider the shifted variable ) f  := X + x. The shifted variable now 

satisfies the functional equation of the type (1.2), wi th /3  = x(1 - pc). Conversely, if )( 

is solution to (1.2), then  )(  = X + x with x = /3/(1 - pc) and X is solution to (2.1). 
Clearly 

(2.5) ~ 2  (P) = exp{ [px + p'~g(log p)] }, p >_ O. 

Random variables whose LST are given by (2.5) with g(.) = g > 0, a constant,  are known 
as shifted one-sided LGvy-stable variables. 

2.3 Semistable distributions as limit laws in Statistics 
Stable laws are well-known to be limit laws for sums of centered and normalized of n 

lid random variables (see Uchaikin and Zolotarev (1999) for more details and references). 
Allowing sample size to grow geometrically, semistable laws also appear as limit laws. 
Let X be a semistable variable whose LST is solution to (1.2). It appears as possible 
nondegenerate limit law of 

Pn '~'m - -  X n  

E 
(7n r n = l  

where Xm d A', m > 1 is an lid sequence, xn E 1R, an > 0 and pn > 0 (see Pillai (1971)). 
The integer-valued sequence Pn is assumed to satisfy the additional geometrical growth 
properties: limnT+~ Pn = +oo and limnw~ P~+l/Pn = P >_ 1. 

The variable A" is said to belong to the domain of partial  a t t rac t ion (DPA) of X. 
See Grinevich and Khokhlov (1993), Kruglov (1972), Shimizu (1970) for DPA character- 
ization of general semistable laws. 

3. The generalized semistable distributions 

We now come to the related largest class of the GSS distributions. 

3.1 Generalized semistabte laws 
Consider the class of ID random variables X with support  [a, oe), a > -oo ,  whose 

LST satisfy the functional equation (1.1) 

m 

(3.1)  x(p) -- I I  
i=1 

The following result yields a formal solution of equation (3.1). 

LEMMA 3.1. Suppose the LST of X solves (3.1). / f  5-'~im__1 3'ici 7 ~ 1, necessarily 
X has support [0, cxD). In any case, the Ldvy spectral function of X has the formal 
representation 

(3.2) 7 r ( x ) - -  Z x-~tst( l~ 
~tGS 
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m where S is the set of solutions a to ~ i = 1  7ic~ = 1 and sl(.) are non-negative periodic 
functions with periods logci, i = 1 , . . .  ,m .  

PROOF. By L~vy-Khintchine formula (see Feller (1971), p. 450, Bertoin (1996)), 
the Laplace exponent function of X reads - log ~ x  (P) := ap + L(p), where L(p) := 

f : ~ 1 7 6  - e-PX)~r(dx) for some L~vy measure integrating 1 A x. By functional equation 
(3.1), we get 

ap 1 -  "Yici + L(p )=  ~ '~ iL(c ip) .  
i=1 i = l  

m As l i m p ~  L(p)/p = 0, we get a = 0 if ~-~i=1 "y~ci # 1. 
Using an integration by parts, 

f0 +~ ~ + ~  
L(p) = (1 - e-PX)~r(dx) = - p  ~r(x)e-PXdx, 

we get in any case the scaling property for ~r 

m 

i=1 

Introducing the positive function H(x) := -~r(eX), this functional equation takes the 
simpler convolution form 

m 

H(x)  = ~ ' y i H ( x  + xi), Vx e R 
i=l  

with xi := - log ci. Now, we are in the position to apply the Lau-Rao-Shanbhag theorem 
(see p. 38 Corollary 2.3.2 of Theorem 2.3.1 p. 36 of Rao and Shanbhag (1994)). Indeed, 
introduce the structure function T(q) :-- ~-~i=l ca m "~ i ,  q E ~ .  

Under our hypothesis, it is positive and convex. As a result, the equation: T(a) -- 1 
admits  none, one or two solutions in l~. Denote by S the set of these solutions. Then, 
the function H takes the form 

g(x )  = ~ e -a~s~(x) 
arES 

with the convention tha t  the sum over the empty set is null. Here, the functions sl are 
positive and periodic, tha t  is satisfying sz(x) = sl(x + x~), for all i = 1 , . . . ,  m. 

In terms of the L~vy spectral function 7c itself, we get, formally 

7r(x) = - ~ x-~'st( logx),  x C (0,+oc) .  
c~zES 

This completes the proof. [] 

As 7r must be the L6vy spectral function of some ID random variable X,  additional 
conditions have to be imposed. We shall first need the following definition. 
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DEFINITION 3.1. For a given a E N and a positive function s(.), the  pair (a,  s(-)) 
will be called an admissible pair,  if we have 

(i) a C (0, 1), 
(ii) function s(.) is representable as s(x) := e a~(~), for some right-continuous 

bounded  periodic funct ion ~ with periods x := - l o g o ,  c := (cl,...,Cm) such that  
x - v(x) is non-decreasing function. 

LEMMA 3.2. Let X be a non-degenerate ID random variable whose Lgvy spectral 
function is given by equation (3.2) then necessarily the pairs (a l , s l ( ' ) ) ,  l = 1,2 are 
admissible. In other words, we have 

Z x) 
arCS1 

where S 1 i8 the set of sol~ttions ol of T(OL) = 1 with values in (0, 1) and where for each 
l = 1, 2 the pair (at,  sz(-)) is admissible. 

PROOF. Consider the formal solution (3.2). 
�9 If S = {0}, 7r(x) = 0 and we get the degenerate  solution X = 0. 
�9 If [S] = 1, let t ing S = {a}, we get 

~(z) = - x - % 0 o g z ) ,  x > 0. 

As lr must  be the L~vy spectral  function of some ID random variable X ,  additional 
conditions have to be imposed. First  the non-negative function s(.) must  be bounded.  
Indeed, s(log x) = -xa~r (x) ;  now, as -xaTr(x) is locally bounded and as s(x) is periodic, 
necessarily supze~ s(x) :=  flst[~ < oc. 

Next ,  as 7r(cc) = 0, necessarily, a must  be a positive number  and the  restriction 

a < 1 follows from f+~176  A x)rc(dx) < oe. 
Finally, the hazard funct ion x-~s(logx) should be non-increasing with x. In other  

words, if we let s(x) := e ~"(x), for some periodic function ~, with periods x := - l o g  c, 
e := (cl,...,c,L), then  x -  u(x) has to be a non-decreasing function. Finally, it is 
necessary that  u(x) be right-continuous. Thus,  the pair (a,  s(.)) has to be admissible. 

�9 If Isl = 2, let t ing S = {a l ,  ct~} with, say a t  < as ,  then we have 

~r(x) = - [x -Ols l ( lOgx)  + x - ~ s 2 ( l o g x ) ] ,  x > 0 

where sl(x) := e ~'*(x),  l = 1,2 are positive and periodic with the same periods xi, 
i =  l , . . . , m .  

Now, each non-negat ive function st must  be bounded; indeed, 

sl(log x) <-xa'rr(x).  

As -x~Tr(x) is locally bounded  and as sl is periodic, necessarily ]]st][o~ < o~. 
Using the same arguments ,  as for the case ISI = 1, a l  and a2 must  be in the interval 

(0, 1). Finally, e - ~ s l ( x )  + e-~2Zs2(x) should be non-increasing in such a way tha t  the 
hazard function -Tr(x) be non-increasing with x. 

In other  words, if we let sl(x) := e ~'~(x), for some periodic functions ~l with periods 
x := - l o g  c, c := ( c l , . . . , c , ~ ) ,  then 

H(x) := e -~(~-'~(x)) + e -~ (x - '~ (~ ) )  
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should be a non-increasing function. 
Let Hz(x) := e -at(x-'~(x)), l = 1, 2, we shall show that  both Hi(x )  and U2(x) should 

in fact be non-increasing. 
Indeed, let z2 > zl. It is thus necessary tha t  H(z2) _< H(z l ) .  
Now, as 0 < o~1 < ol 2 and from the boundedness  of st : H(z2)  = Hi(z2)(1  + c(z2)), 

with e(x) = H2(x) /Ul (X)  x(--~+oo O. 

Now, for any i E { 1 , . . . ,  m} and for any n E Z, the condit ion H(z2) <_ H ( z l )  also 
reads 

Hi(z2 + nxi) < 1 + ~(zl + nxi) 

Hi(z1 q- nxi) - 1 + c(z2 + nxi)" 

But,  from the expression of H1 and the periodicity of Ul(X), we get 

Hi(z2  A- rtxi) Hi(z2)  

Hi(z1  q- nxi) Hi(z1)"  

Hence 
Hi(z2) < 1 + e(z I ~- n x i )  --~ 1. 
Hi(z1) - 1 + c(z2 + nxi) nxiToz 

As a result: Hi(z2) <_ Hi(z1) .  In a similar way, as nxi T -cx~, one can establish that  
H2(z2) <_ H2(zl) .  Finally, it is necessary that  ~'l(x) be right-continuous. Thus, both 
pairs (al, sz(')), 1 = 1, 2, have to be admissible. [] 

Put t ing  all this material  together, we obtain  

THEOREM 3.1. Let X be an ID random variable with support [a, oc), a > - o c .  I f  
its L S T  is solution of the functional equation (3.1), then a = 0 and its Ldvy spectral 
function reads 

7r(x)----- E x-a~sz(l~ 
c~ES1 

Here $1 is the set of solutions a of ~-~i~=1 7ic~ = 1 in (0, 1) and for each at e S1 the pair 
(at,  st (')) is admissible. 

Besides, exploiting the properties of the functions sl( logx),  the solution depends on 
the commensurability of the sequence (log ci, i = 1 , . . . ,  m). More precisely: 

�9 If  (logci, i--- 1 , . . .  ,m)  are commensurable with common period logc, then: 
�9 (i) [31[ = 1 and the solution is a semistable distribution 
�9 (ii) ISll = 2 and the solution is the sum of two independent semistable distribu- 

tions. 
�9 I f  (log ci, i -- 1 , . . . ,  m) are noncommensurable, then: 
�9 (i) [31[ = 1 and the solution is a one-sided stable Ldvy distribution 
�9 (ii) [311 = 2 and the solution is the sum of two independent one-sided stable Ldvy 

distributions. 

PROOF. The first par t  of the theorem is easily obtained by combining Lemmas 3.1 
and 3.2. We note that  the periodicity condition for sz(x) is equivalent to 

(3.3) sl(x) = sz x + pixi 
i=l 
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with  xi = - log ci and for all Pi E Z, i = 1 , . . . ,  m. Two different cases then  arise 
�9 [lattice case]: xi = - r i l o g c ,  i = 1 , . . .  ,m,  c E (0, 1), r ,  E Z and gcd(ri)  = 1. The 

functions st (x) are identified with periodic functions with period - l o g  c. 
If [$11 = 1, we recognize the spectral  function of a semistable law. In the case 

ISll = 2, r factorizes into the LSTs of two independent  r andom variables (X1, X2) 
where each Xz is an ID random variable with semistable L6vy spectral  function 

Irl(x) = - x  ~ 'sz(logx),  x > 0, l = 1,2. 

�9 [non-lattice]: the periods xi are noncommensurable:  only the constants  s(x) = s 
are r ight-continuous bounded  solutions of (3.3), since the set ~--~m I x~Z is dense in I~. 
Now, like in the latt ice case, the solutions of the functional equat ion (3.1) are either the 
one-sided stable L~vy LST  (ISll = 1) or the p roduc t  of two such LST (ISll = 2). This 
completes  the proof. [] 

Remark 3.1. Consider the latt ice case with common period - log c defined above. 
If $1 = {a}, let p > 1 be defined by pc ~ = 1. Equat ion  (3.1) becomes ~ x ( P )  -- ~Px(cP) 
which is (2.1). If S 1 = {C~l, OL2}, let pt > 1 be defined by ptc az = 1, l -- 1, 2. The random 
variable X whose LST solves (3.1) reads X = X1 + X2 where ~x t  (P) = ~x~(Cp),pz 1 = 1,2. 

Let  us give a simple i l lustrative example of such a phenomenon.  

Example 3.1. Let  m = 2. Let  c C (0, 1) and C 1 = C, C 2 ---- C - 1 ,  in such a way that  
Cl < 1 < c2. Let ~/1 = 1 and % := y > 0. Under  these hypothesis,  it may  be checked 
tha t  the equat ion r ( a )  -- 1 admits  two positive solutions if and only if 0 < ~ < 1/4 in 
which case these solutions are 

0<Oq --1ogc(1-- 2 ~ )  ( 1 + ~ )  ---- < a2 = - log c �9 

1- I~:-~--4~ the solutions al and a2 belong to the interval (0, 1). Thus F o r 0 < c <  2 
X = X1 + X2 where (X1 ,X2)  are independent  ID random variables whose LSTs  are 
character ized by ~Px~ (P) = ~P~, (cp), l = 1, 2 with (Pl > 1, P2 > 1) defined by 

1 - v / i - -  4~/ 1 +  V ~- -  4 7 
Pl ---- C-a1  = and P2 = C-(~2 -- 

27 27 

As it was emphasized in Theorem 3.1 the number  of solutions to r ( a )  = 1 in the 
interval (0, 1) is a central  point  in characterizing the solutions of the functional equat ion 
(3.1). 

We now come to solution explicit form of (3.1), exploiting a correspondence between 
LS T  of ID random variable and its L~vy spectral  function (2.2). 

PROPOSITION 3.1. Let X be a GSS random variable with Ldvy spectral function 

(3.4) 7 r ( x ) = -  E x - ~ ' s l ( l ~  
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where $1 is the set of solutions a o f  Eim=l 7iC~ ---- 1 in (0, 1) and such that for each at C S1 
the pair (at, sl(.)) is admissible. Assume in addition that the st(') are continuous with 
left and right derivatives at each point. Two cases arise: 

�9 If  (logci, i = 1 , . . .  ,m)  are noncommensurable, then the functions st(.) are con- 
stant with st := st(.). We have 

with sl = stF(1 - a) .  

~x(p)  = exp { -  E slP~ } , 
~tCSa 

p_>0  

where 

From (3.5), we obtain 
g t ( log p ) = E ~n,t C ~ ~-- 2 iTrn log p / log c 

nEZ 

2iTrn~ 
8n,l :=  8 - n , l r  1 - az + l--~g c ] ' 

This completes the proof. [] 

n E Z ,  l = 1,2. 

�9 If  (logci, i = 1 , . . .  ,m)  are commensurable with common period logc, then the 
functions sl(') are periodic with period logc, with, say, (Sn,t)neZ as Fourier series coef- 
ficients. Then, it holds 

(3.5) ~ x ( p ) = e x p { -  E p~gz( logp)} ,  p>_O 
s t  ES1 

where gt are non-negative periodic functions given by their Fourier series coefficients 
2iTrn ] gn,l := S-n,lF(1 - a l  + logc J, n E Z. 

PROOF. The first par t  follows from the identity 

(3.6) pa _ a (1 -- e-PZ)x-O+COdx. 
r(1 -- a) 

Concerning the second part ,  for l = 1, 2, let 

(3.7) sz(log z) = 2-,r" Sn,le-2i n ~176 
nCZ 

with sn,l, n E Z, the Fourier coefficients of st(.). Combining (3.4), (3.7), we obtain 

(3.8) 7r(x)  
= _  v - _  

L ~n,lZC 
~l ES1 nEZ 

Thus, using (3.6) with a C C, 0 < Re(a)  < 1, (3.8) gives 

fo +c~ ( l-~gc ]2iTrn~ pa~+2i~rn/l~ 

O~ l E S  1 n E Z  
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Remark 3.2. Given any non-negative periodic function g(.) and a �9 (0, 1), the 
function 

exp{-pag( log  p) } 

is not the LST of a ID random variable with suppor t  [0, c~). It is the case if and only if 
p ~ ( l o g p )  has a completely monotone derivative (see Feller (1971), p. 450). The functions 
g(-) defined in the  preceding proposit ion obviously fulfill this condition by construction. 

In the  forthcoming section, we shall need the following definition. 

DEFINITION 3.2. For a given a C ]R and a positive function g(-), the pair (c~, g(.)) 
wilt be called a Laplace-admissible pair, if we have 

(i) a �9 (0, 1), 
(ii) function g(.) is a non-negative periodic function with periods x := - l o g  c, 

c := ( c l , . . . ,  cm) 
(iii) p~g(logp) has a completely monotone derivative. 

3.2 The shifted generalized semistable laws 
Let/3i  C R, i = 1 , . . . ,  rn and consider the functional equation 

m 

(3.9) = 1-I p _> 0, 
i = 1  

in the  class of LST of random variables with suppor t  [a, oc) for some a > - e c .  Wi th  
r r t  

/3 := ~ i = l / 3 i ,  this is also 

m 

(3.1o) = I I  p _> o. 
i = 1  

PROPOSITION 3.2. Let X a random variable whose LST  is solution to (1.1). The 
LST  of X = X + x is solution of (3.9) or equivalently (3.10) with/3 = x(1 - }-~irn__ 1 ~/ici). 

Conversely, let X be an ID random variable with support Ix, oc), x > - o c  whose LST  is 
solution of the functional equation (3.9) or equivalently (3.10), then x =/3/(1--~im__1 2/iCi) 
and X = X + x where the L S T  of X is solution to (1.1). 

PROOF. Consider the LST ~b(p) := e-PX~(p) where ~(p) is the  LST of the random 
variable X which solves (1.1). Then clearly ~b(p) solves (3.10) or (3.9) wi th /3  = x(1 - 

Y~i=I ~/ici) and ~b(p) is the  LST of the shifted random variable ) (  = X + x. 
Conversely, suppose there exists a LST ~(p) in the class of LST of random variables 

with suppor t  [x, e~) for some z > - e c  which solves (3.10) or (3.9). 
Introduce ~ ( p ) : =  exp(/3/(1 -y~i~=l ~/ici))~(p). Then p(p) satisfies (1.1) with sup- 

port  Ix - / 3 / ( 1  - E i r n = l  ~/iCi), 0(3) and from Theorem 3.1, x = /3 / (1  - }-~i~1 7ici). [] 

Remark 3.3. (i) We note that  in (3.9) the /3~, i = 1 , . . . , m  are not unique and 
m tha t  its solution is related to /3  := }--~-i=1/3i. 
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(ii) Shifting by x the solution (3.5) of (1.1), solutions of (3.10), are found to be 

(iii) Let X be a random variable whose LST fulfills (3.1), not necessarily ID. From 
the Lau-Rao-Shanbhag theorem, one can obtain a formal solution under the form 
exp{-}--]~cspC~z(logp)},  p _> 0, where S are solutions to T(q) = 1 (with at most 
two solutions C~l < 32) and sz are positive, bounded and periodic functions. When 
IS[ = 1, ~px(p) is the LST of a semistable distribution, hence necessarily ID. When 
t s t  - -  2, we could not prove that solutions to (3.1) are necessarily ID. 

3.3 Properties of GSS laws 
Let us now stress some additional properties of GSS random variables with support 

1/  Semi-selfsimilarity: 
One-sided Ldvy-stable distributions are interesting in practice because of the self- 

similarity property of the associated subordinator process with stationary independent 
increments. Indeed, the induced strictly L@vy-stable processes {X(t),  t > 0} share the 
strict selfsimilarity property: for any ; > 0 

(3.11) {X(~t), t _> 0) =~ {~l/~X(t), t > 0). 

If this holds, {X(t), t _> 0} is said to be strictly selfsimilar with characteristic exponent 
1/o~. 

For strictly semistable random variables, their associated strictly L@vy-semistable 

processes satisfy {X(t),  t > 0} d {cX(pt), t >_ 0}, for some p > 1 and c related through 
pc ~ = 1 with a C (0, 1). 

Thus, for some p > 1, {X(pt), t >_ 0} d {pl/~X(t) ,  t > 0}, which is also: for some 
p >  l a n d f o r a n y n E Z  

(X(pnt ) , t  ~_ O) d {pn/ax(t) ,  t ~_ 0}. 

Such random processes are said to be semi-selfsimilar (with exponent 1/c~) as (3.11) only 
holds for those ; of the particular form ~ = pn, n E Z, concentrating at zero (see Sato 
(1999)). 

Note that the process interpretation of functional equation (3.1) reads 

{X( t ) , t  > 0} s c~X(i)(~t),t > 0 

where {X(i)(t), t _> 0} are m-lid copies of L@vy processes satisfying X(i)(1) d X. 
If 1511 = 1, in the lattice (non-lattice) case, the solution to the functional equation 

(3.1) for X is semistable (stable). As a result, the process associated with such GSS laws 
is semi-selfsimilar (selfsimilar). 

If [811 = 2, in the lattice (non-lattice) case, GSS distributions are the convolution of 
two semi-selfsimilar (selfsimilar) laws. This constitutes a further extension of the semi- 
selfsimilarity (selfsimilarity) notion for the associated subordinator process. In this case 
indeed, such process has two characteristic exponents. 
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2 /  If ISll = 2, (3.5) yields: 

@x(p) = exp{- [pmgl ( logp)  + p~=g2(logp)]}, p ~ O, Oll< 012 

with two non-negative bounded periodic functions, gl and s2. Clearly, we have 

1 - qox(p)p~oP~la l ( logp) .  

Thus X is "close" to be regularly-varying with tail index a l  > 0, jus t  like the L6vy 
stable law was. In fact, a l though L(p)  := gx(logp) is not slowly varying, it satisfies the 
weaker condition that ,  for all t > 0, L ( t p ) / L ( p )  has a liminf and a limsup for small p. 
By Tauberian theorem (see Feller (1971), p. 445), X is heavy-tailed, with characteristic 
exponent ctl. 

4. GSS distributions as limit laws in Statistics under random geometric growth 

In this section, we show tha t  generalized semistable distributions may be seen as 
limit laws for some renormalized sum of an iid sample. It should be emphasized tha t  we 
have here no pretention of fully characterizing the at t ract ion basin of GSS laws. Some 
work in this direction for the particular case of semistable distributions may  be found in 
Grinevich and Khokhlov (1993), Kruglov (1972), Shimizu (1970). 

4.1 The semistable case: Pre l iminar ies  
Consider a particular lattice GSS model wi th  "Yi = 1, ci = c r~, ri E N, i = 1 , . . .  ,m,  

gcd(ri) = 1 and ~ ci < 1. This guarantees tha t  we are in a semistable case with a 
unique a E (0, 1) defined by 7(c~) = 1. 

Define now the integer-valued function n ( r )  of r C N, recursively by 

rgz 

n ( r ) = l ( r *  > r ) + E n ( r - r i ) l ( r , _ < r ) ,  r E N * ,  n ( 0 ) = l  
/ = 1  

with r* := maxi=l  ..... m ri. This sequence is a deterministic mul t i type branching process 
which states tha t  the number  of individuals at discrete t ime r is obtained as follows: at 
t ime r = 0, a single ancestor is available; this ancestor gives bir th to m first generation 
sons as a whole, a type-i  son coming to life at  t ime ri > 0. The ancestor dies at t ime 
r* when it gives birth to its last son. Each first generation son repeats the same split- 
t ing program, start ing from its birth time, and so forth for the subsequent generations. 
This construction simply is a deterministic version of the age-dependent Crump-Mode 
branching process. Clearly, under these hypothesis, n(r )  ~"rT~o K P  ~ for some K > 0, 
where p > 1 is uniquely defined by y~i~=l p-T~ = 1. Recalling tha t  the condition r ( a )  = 1 
reads 

rt~ ~Tb 

= = 1 ,  
i = l  i = 1  

we conclude tha t  tic a = 1. 
Let ( X j , j  >_ 1) be a sequence of iid random variables, distr ibuted like a positive 

random variable X, with LST r Let Z ( r )  := ~ ( r  1) 2dj. With these preliminaries, we 
have 
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PROPOSITION 4.1. Let g(.) some Laplace-admissible scale function and L(.) some 
slowly varying function at infinity. I f  for small p we have 

1 -- r p,~+ l~)L(p-1)]ag(log(pL(p-1))) 

then there exists a(r) > 0 such that the rescaled process Z(r) := Z(r) /a(r) ,  r E N, 
converges in law, as r ~[ oc, to some semistable law. 

PROOF. First, define a(r) by L(a(r)) /a(r)  = c ~. Next, consider ~ ( p )  := 

Ee -p2(r), under our hypothesis with c2 (r) ~T-*or 0, for large r we have 

~ p__p__~ n(r) exp{-n( r ) [1  - r + E2(r)]} = r = 

{ n( r )  g ( l o g  p L e x p - - - K - - [ - ~ r ) L ( ~ - ~ ) ]  a [ a - ~  ( ~ r - ~ ) l ) }  

~ exp{-pag(log~c~])  }. 

As r E N, if ~'(log p) has period log c, it follows tha t  

~r[P) ---* e -p~(l~ 
rTe~ 

which is the LST of some semistable random variable X,  as required. [] 

We now show how to obtain lattice GSS laws as the weak limit of some rescaled 
sum of a Poisson random number of iid random variables when the Poisson intensity has 
geometric growth. 

4.2 The full GSS case 
In the GSS model, let us now simply assume tha t  ci,Ti > 0, i = 1 , . . .  , m  are such 

tha t  81 = {a E (0, 1) : T(a) = 1} is not empty. In the lattice case, there exists c E (0, 1), 
ri E Z such tha t  ci = c r~, i = 1 , . . . , m ,  with gcd(IriI) = 1. 

Let now N(r) be a Poisson process with intensity A(r) satisfying the functional 
equation 

m 

= - V r  Z .  

i=1  

Solutions of the type A(r) = Kp r with K > 0 and p > 0, exist if there exists p > 0 
satisfying "* . -r~ . El--1 "hfl : 1 Recalling tha t  condition ~-(a) = 1 reads 

E ~/ic~ = "/ic sr~ = 1, for each a E $1, 
i=1  i=1  

we can take p = Ps where, for each a E N1, PsC s -- 1 and Ps > 1. 
For each a E St,  we will denote by Ns(r)  the Poisson process with intensity As(r) = 

KsP2, K s  > 0. Furthermore,  A(r) = ~ E 8 ~  As(r). If ISll = 2, w e  assume these two 
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Poisson processes to be independent so that N(r)  = ~ e s l  N~(r) is a Poisson process. 

For each a E S1, let (2"~ =d X~,j,j >_ 1) be an lid sequence, independent of N~(r) and 
let Ca(P) be the LST of A'~. If ISll = 2, assume (X~,j , j  > 1, N~(r)), a E 81, to be 
mutually independent. Consider now the sum processes 

No(r) 

Z~(r) := E Xs,j and Z(r) := E Z~(r). 
j = l  s E S 1  

Clearly, these processes are infinitely divisible as Poisson sums of iid random variables. 

Observe that Z(r) d ~ ; ( ~ ) X j ( r ) ,  with (X(r) d 2(j(r),j > 1) an iid sample for each r 

defined by the Bernoulli mixture: X(r)  d Br2Csl,j + (1 - Br)Xs~,j with $1 = {hi, c~2} 
and B~ C {0, 1} a Bernoulli variable, independent of X~,j, ~ c $1, for which P(Br  = 
1) = As(r ) .  

P R O P O S I T I O N  4.2. Assume 
1 

1 - r ~ - - ~ L ( p - 1 ) ] ~ ( l o g ( p L ( p - 1 ) ) ) ,  a e $1 
pJ, O+ Ks 

for some Laplace-admissible scale function gs('). Then, there exists a(r) > 0 such that 
the rescaled process 

Z(r) := Z(r) la(r)  

converges in law to some GSS random variable X as r Too. 

= 1 r PROOF. Define as(r) by [cr~(r)/L((rs(r))] - s  /p~, a e S1. With ~ ( p )  := 

Ee -p2(~) and from the Poisson structure, we get 

~r(p) = e x p { - s ~ s  Aa(r)[1-r  eve -p~(I~ "/~)). 
1 

Recalling that psc ~ = 1 for each a,  we observe that  an(r)  := a(r) is independent of a 
with [~r(r)/L(a(r))] = c -~ defining a(r).  Next, 

A~(r)[1 - r  )] ~ p~s(log(pL(~r(r) ) /a(r) ) ) 

1 log p and and as function ~ ( . )  has period logc := - ~  

- E a~Sl  p ~ ( I o g p )  

r~oo 

which is the LST of some GSS random variable X, as required. [] 

5. Conclusions 

A functional equation generalizing the one characterizing semistable distributions 
has been considered and solved. GSS laws have been shown to be limiting laws for 
normalized and centered sums of specific iid random variables when the sample size 
(either deterministic or random) grows geometrically. 

Further extensions of these GSS distributions are presently under study, namely the 
ones obtained when randomizing the integer m, and/or  the location-scale and intensity 
parameters ((3i,ci,7i) i = 1 , . . .  ,m) in (1.1), following the works of Guivarc'h (1990), 
Kahane and Peyri~re (1976), Liu (1997), Mandelbrot (1974a, 1974b) and Shimizu and 
Davies (1981). 
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