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ABSTRACT

We introduce max-multiscaling distributions as solutions to a functional equation

which, in a natural way, extends the one fulfilled by max-semistable distributions.
We establish that strictly max-multiscaling distributions are products of at most
two max-semistable distributions. Next, we show how to obtain these solutions as

limit laws of normalized maximum of suitable independent sequences of random
variables when sample size has geometric growth.
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7539), Institut Galilée, 93430, Villetaneuse and CERMICS, ENPC, 6 et 8 Avenue Blaise
Pascal, 77455, Marne la Vallée, France; E-mail: mba@zeus.math.univ-paris13.fr.

STOCHASTIC MODELS

Vol. 20, No. 4, pp. 493–512, 2004

493

DOI: 10.1081/STM-200033119 1532-6349 (Print); 1532-4214 (Online)

Copyright # 2004 by Marcel Dekker, Inc. www.dekker.com



ORDER                        REPRINTS

1. INTRODUCTION

This work deals with an extension of max-semistable (in short MSS) laws which
are invariant under affine normalizations: the so-called max-multiscaling (MM)
distributions.

An important building block of the MM models is the class of strictly MM ran-
dom variables of type I. These are identified with the ones with support [0,1), whose
distribution function (df), say F , satisfies a functional equation of the form

FðvÞ ¼
Ym
i¼1

Fðv=ciÞgi ð1Þ

for some m > 1, ci 2 ð0;1Þ, gi > 0, i ¼ 1; . . . ;m. This equation generalizes the one
characterizing strictly max-semistable distributions of type I which is obtained when
m ¼ 1.

Our physical motivations are the following ones. Just like for sums, maximum
infinitely divisible (MID) variables are either of the compound Poisson type or suita-
ble weak limits of these.[1] Indeed, let Vþ be a random variable with support ½0;1Þ.
When v > 0, its df F reads FðvÞ ¼ expf��ppðvÞg, where �pp ð�Þ is a right-continuous,
non-increasing function satisfying �ppðvÞ !v"1 0. Let (wpðEÞ, p � 1) be an independent
and identically distributed (iid) sequence satisfying

Pðw1ðEÞ > vÞ ¼ �ppðvÞ
�ppðEÞ ; v > E:

Let PðlðEÞÞ be a Poisson random variable with intensity lðEÞ > 0, independent of
ðwpðEÞ;p � 1Þ with lðEÞ

�ppðEÞ !E#0 1. We then have the weak approximation

max
p¼1;...;PðlðEÞÞ

wpðEÞ!d
E#0

Vþ:

If �pp !v#0 1;Vþ is not in the compound Poisson class and lðEÞ !E#0 1, suggesting
that ‘‘micro-events’’ ðwpðEÞ;p � 1Þ with small amplitudes are extremely frequent.
The limiting observable Vþ now physically interprets as the maximum of a Poisson
number of such micro-events.

Suppose F satisfies functional Eq. (1) with m ¼ 1, r :¼ g1 > 1 and c :¼ c1 2 ð0; 1Þ.
Such an MSS ‘‘observable’’ Vþ, as defined by Vþ�d maxp¼1;...;PðlðEÞÞ wpðEÞ, might as well

result from more frequent micro-events but with smaller reduced amplitudes. Indeed, in

this case, Vþ also satisfies Vþ �d maxp¼1...PðrlðEÞÞ cwpðEÞ. This translates an amplitude and
scale invariance principle for the observable.

Let us now consider the case of a strictly MM observable Vþ of type I. Suppose
that there are m > 1 possible types of sources from which independent observations
of the same random phenomenon Vþ can come from. The functional Eq. (1) suggests
that Vþ also satisfies

Vþ�d max
i¼1;...;m p¼1...

max
p
i
ðgilðEÞÞ

ciwi;pðEÞ:
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Here, (wi;pðEÞ;p � 1; i ¼ 1; . . . ;m) is an iid sequence with wi;pðEÞ¼d w1ðEÞ, independent
of the independent Poisson sequence PiðgilðEÞÞ, with intensities gilðEÞ . This means
that the observation might as well result from the aggregation of m > 1 independent
observations of statistically similar events, each with its specific intensity and scale.

Central to the strictly type I solutions to functional Eq. (1) is the structure function

tðqÞ ¼
Xm
i¼1

gic
q
i ; q 2 R ð2Þ

and the number jSþj, withSþ ¼ fa > 0 : tðaÞ ¼ 1g. We have jSþj 2 f0; 1; 2g and if
jSþj 6¼ 0 the closed form solutions to (1) are exhibited. More precisely, if jSþj ¼ 1 one
recovers the Fréchet MSS class (in the lattice case ci ¼ cri ; c 2 ð0; 1Þ; ri 2 Z) and the
Fréchet max-stable (MS) class in the non-lattice case. If jSþj ¼ 2, one gets the full type
I MM distributions. It will be shown in Corollary 2 that the df of such distributions is
representable as the product of two semi-stable dfs. More precisely, if jSþj ¼ 2 with
two exponents a1 < a2, we shall show that solutions to (1) are of the form

FðvÞ ¼ exp
���

v�a1ea1n1ðlog vÞ þ v�a2ea2n2ðlog vÞ
��
; v > 0

where nkðxÞ, k ¼ 1; 2 are essentially periodic functions with the same periods
xi ¼ � log ci, i ¼ 1; . . . ;m.

In this case, � logFðvÞ �v"þ1 v�a1ea1n1ðlog vÞ and � logFðvÞ �v#0 v�a2ea2n2ðlog vÞ

and empirical evidence of max-multiscaling phenomenon results from

� logð� logFnðvÞÞ � a1ðlog v� n1ðlog vÞÞ for large v

� logð� logFnðvÞÞ � a2ðlog v� n2ðlog vÞÞ for small v:

Here, Fn :¼ 1
n

Pn

m¼1 1ðvm � vÞ is the empirical distribution function where
(vm;m ¼ 1; . . . ; n) are iid random variables with distribution F . A plot of
� logð� logFnðvÞÞ against log v should exhibit oscillations around a linear trend with
positive slope a1 at v ¼ þ1 and positive slope a2 > a1 at v ¼ 0.

Discrete scale invariance (with a single scaling exponent) and selfsimilarity are
naturally associated to critical phenomena in Physics.[26] Laws with non-unique
scaling exponent are currently called multiscaling in the physics literature and are
relevant in fully developed turbulence and disordered systems. Precise relationship
between such intensity and scale invariance with the concept of (semi)-selfsimilarity
will be briefly discussed in Subsec. 3.3.

In more details, this work is organized as follows.
In Sec. 2, the main features of MSS distributions are recalled[5–8,16,17]. These

constitute a first-step extension of the max-stable (MS) Fréchet–Weibull–Gumbel
trio. Some of their remarkable properties are briefly discussed, in particular their
occurrence as limit laws.

In Sec. 3, we introduce the class of MM distributions. They can be defined as the
fixed point of some transformation. More precisely, strictly max-multiscaling
random variables of type I are identified with the ones with support ½0;1Þ, whose
df , say F , satisfies a functional equation of the form (1). Strictly max-multiscaling
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random variables of type II are the ones satisfying (1) with support ð�1; 0�. Max-
multiscaling random variable of type III are the ones with support R satisfying
FðxÞ ¼ Qm

i¼1 Fðxþ biÞgi , for some m > 1, bi 2 R, gi > 0, i ¼ 1; . . . ;m. Type II may
be seen as negative reciprocal inverses of type I and type III as log type I. Introdu-
cing shifts, broad sense MM (of type I and II) distributions can be obtained. They are
the ones solutions to FðvÞ ¼ Qm

i¼1 Fðv=ci þ biÞgi with bi ¼ ~xxð1� 1=ciÞ, i ¼ 1; . . . ;m,
for some real number ~xx, an endpoint of the support.

Our representation results of MM distributions of all types are summarized in
Theorem 1, Corollary 2 at the beginning of Sec. 3. After a preliminary study of
strictly max-multiscaling models of type I in Subsec. 3.1, we complete the proof of
this theorem in Subsec. 3.2.

Subsec. 3.3 deals with the concept of (semi-) selfsimilarity in relation with MM

models.
In Sec. 4, we finally show that MM distributions may be seen as limit laws for

some renormalized maximum of independent random variables, when sample size
grows geometrically with some parameter r. We proceed progressively by giving
two examples. A primary deterministic illustration of geometrical growth is when
the sample size nðrÞ � Krr for some constants K > 0, r > 1. This number is gener-
ated by a deterministic version of the Crump and Mode branching process.[2] In this
case, the MM limiting laws are in the class of MSS distributions. The obtained result
is displayed in Proposition 7; it is in accordance with known results on max-domain
of attraction for MSS distributions as described in Ref.[16]. Assuming a random Pois-
son sample size NðrÞ with geometrically growing intensity, an example of a normal-
ized sequence with MM distributions as limit laws is finally supplied. The main result
on this construction is displayed in Theorem 8.

2. MAX-SEMISTABLE MODELS

We shall first recall a concept whose generality is larger than the well-known one
of max-stability of the Fréchet–Weibull–Gumbel models, i.e., of limit laws of classi-
cal extreme value theory: namely the one of max-semistability. Max-semistable laws
are identified with the ones whose df satisfies a functional equation of the form

FðvÞ ¼ Fðv=cþ bÞr ð3Þ

for some c > 0, b 2 R, r > 0. They constitute the ‘‘max version’’ of the notion of
semistability for sums first introduced by Paul Lévy in 1937 (see Ref.[12], p. 45 for
a survey on this point).

Max-Semistable Model (Type I): ‘‘Extended’’ Fréchet

Let r > 1 and c 2 ð0; 1Þ. First, consider the class of positive random variable Vþ

whose df satisfies the simpler functional equation

FVþðvÞ ¼ FVþðv=cÞr: ð4Þ
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These will be called strictly MSS variables of type I. The class of solutions of (4) are
found to be (see Ref.[8])

FVþðvÞ ¼ expf�v�asðlog vÞg; v > 0; ð5Þ

where (i) a ¼ � logc r > 0, (ii) sðxÞ is a non-negative function such that sðxÞ :¼ eanðxÞ,
for some right-continuous bounded periodic function n with period �log c, satisfying
the additional condition that x� nðxÞ is non-decreasing. In sharp contrast with Fré-
chet’s model, the scale parameter is not constant. Actually, the variable Vþ is not
representative of all the class of MSS variables of type I. Those obtained after a shift
of Vþ are also in this class. Indeed, let xþ 2 R; consider the shifted variable
Xþ :¼ Vþ þ xþ. The shifted variable now satisfies the functional equation of the
form (3), with b ¼ xþð1� 1=cÞ whose solution is

FXþðxÞ ¼ expf�ðx� xþÞ�a
sðlogðx� xþÞÞg; x > xþ: ð6Þ

If in (6) the scale function sðxÞ ¼ s > 0, a constant, we recover the Fréchet laws.

Max-Semistable Model (Type II): ‘‘Extended’’ Weibull. Letting V� :¼ �1=Vþ

< 0, its df is, from (5)

FV�ðvÞ ¼ FVþð�1=vÞ ¼ expf�ð�vÞasð� logð�vÞÞg; v < 0: ð7Þ

It is again MSS and negative in that it now satisfies the functional equation (of the
form (4)): FV�ðvÞ ¼ FV�ðvcÞr. To get all the MSS type II class, we need too shift V�.
The shifted variable X� :¼ V� þ x�, x� 2 R, now satisfies the functional equation of
the form (3) and

FX�ðxÞ ¼ expf�ðx� � xÞasð� logðx� � xÞÞg; x < x�: ð8Þ

This model is the MSS distribution of type II, extending the one of Weibull laws.

The Max-Semistable Model (Type III): ‘‘Extended’’ Gumbel. Let us introduce
the variable X ¼ logVþ, i.e., the logarithm of the MSS variables Vþ defined in (5).
From (5) the df for the variable X is found to be

FXðxÞ ¼ expf�sðxÞe�axg; x 2 R: ð9Þ

We identify this df as the one of an extended Gumbel distribution. With r > 1 and
b :¼ � log c > 0, we note that X is a real-valued random variable, whose df is the
solution to the functional equation of the form (3). In this case: a ¼ ðlog rÞ

ðbÞ .

Note that every MSS law, as solution of (3), is of one of these three types.[5] Let
us now supply an additional remark, underlining the importance of MSS models in
Statistics.[14]
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2.1. Max-Semistable Models as Limit Laws in Statistics

The Fréchet–Weibull–Gumbel models are known to constitute the limit distribu-
tions for centered and normalized iid maxima of n-samples: in this context, they are
to maxima what Lévy-stable laws are to sums. Their maximum domains of attraction
ðMDAÞ and the centering ðxn 2 RÞ and normalizing ðsn > 0Þ constants are available
for example in Ref.[3,23]. Let X be any of these variables. The max-stability property
reads: for any n � 1, with Xm ¼d X;m ¼ 1; . . . ; n; iid random variables, the following
identity in distribution holds

X¼d max
m¼1;...;n

Xm � xn

sn
:

Let now X be any MSS variable with df either given by (6–9). These variables
also appear as all possible non-degenerate limit laws of the distributions
maxm¼1;...;rnðXm � xnÞ=sn, where Xm ¼d X;m � 1 is an iid sequence, xn 2 R;
sn > 0 and rn > 0 (see also Refs.[5,7,16]). The integer-valued sequences rn is assumed
to satisfy the geometrical growth properties: limn"þ1 rn ¼ þ1 and
limn"1 rnþ1=rn ¼ r � 1. The variable X is said belong to the MDA of X. Note that
X itself belongs to its own MDA.

Max-stable variables are MSS and can be obtained when r ¼ 1 (see Ref.[16],
Theorem 7).

3. THE MAX-MULTISCALING MODELS

The following main theorem yields the max-multiscaling distributions of the
different types. We consider the general problem of characterizing distribution
functions satisfying the functional equation

FðxÞ ¼
Ym
i¼1

Fðx=ci þ biÞgi ð10Þ

for some m � 1; ci > 0; gi > 0; bi 2 R; i ¼ 1; . . . ;m. We have

Theorem 1. 1= If ci 6¼ 1; bi ¼ ~xxð1� 1=ciÞ for some ~xx 2 R; i ¼ 1; . . . ;m, then
necessarily the solution’s support is ½~xx;1Þ or ð�1; ~xx�:

(i) The solution’s support is ½~xx;1Þ : with Sþ
1 ¼ fa > 0 :

Pm
i¼1 gic

a
i ¼ 1g, we

have jSþ
1 j 2 f0; 1; 2g. We get non-degenerate solutions of type I if and only

if jSþ
1 j 6¼ 0, with

FðxÞ ¼ exp

(
�

X
ak2Sþ

1

ðx� ~xxÞ�akeankðlogðx�~xxÞÞ
)
; x � ~xx: ð11Þ

(ii) The solution’s support is ð�1; ~xx�: with Sþ
2 ¼ fa > 0 :

Pm
i¼1 gic

�a
i ¼ 1g, we

have jSþ
2 j 2 f0; 1; 2g. We get non-degenerate solutions of type II if and
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only if jSþ
2 j 6¼ 0, with

FðxÞ ¼ exp

�
�

X
ak2Sþ

2

ð~xx� xÞakeaknkðlog 1=ð~xx�xÞÞ
�
; x � ~xx: ð12Þ

In Eqs. (11) and (12), the functions nk are right-continuous bounded periodic,
with periods � log ci; i ¼ 1; . . . ;m, such that x� nkðxÞ are non-decreasing for each
k 2 f1; 2g.

2= If ci ¼ 1; bi 6¼ 0; i ¼ 1; . . . ;m; necessarily the solution’s support is R:

With Sþ
3 ¼ fa > 0 :

Pm
i¼1 gie

�bia ¼ 1g, we have jSþ
3 j 2 f0; 1; 2g. We get non-

degenerate solutions of type III if and only if jSþ
3 j 6¼ 0, with

FðxÞ ¼ exp

�
�

X
ak2Sþ

3

e�akðx�nkðxÞÞ
�
; x 2 R: ð13Þ

In (13), the functions nk are right-continuous bounded periodic, with periods
bi; i ¼ 1; . . . ;m, such that x� nkðxÞ are non-decreasing for each k 2 f1; 2g.

Remark 1. ðiÞ In type I and II distributions found in Theorem 1, part 1=, we do
not loose generality by imposing the condition ci 6¼ 1; i ¼ 1; . . . ;m. Indeed, let
I :¼ fi 2 f1; . . . ;mg : ci ¼ 1g and suppose 1 � jIj < m in (1). From this equation,
it holds that FðxÞ � FðxÞg for all x where g :¼ P

i2I gi. This forces g < 1. Equation

(1) may be written as FðxÞ ¼ Q
i2f1;...;mgnI Fðx=ciÞgi=ð1�gÞ where none of the remaining

ci are equal to 1. Similarly, concerning type III, the condition bi 6¼ 0 could be
released.

ðiiÞ The distributions found in Theorem 1 are invariant under scaling only
or under translations only or under scaling and translations when the shift bi
takes the particular form bi ¼ ~xxð1� 1=ciÞ for some ~xx 2 R. It is not claimed that
the full solutions to (10) have been characterized. Considering solutions invariant
under simultaneous change of scale and location in general, that is for general ci
and bi (not of the above form), is still an open problem to the authors’
knowledge.

ðiiiÞ In case 1=, the support is either ½~xx;1Þ or ð�1; ~xx�. By simple change of
variables of the type used in the presentation of MSS distributions, one easily
obtains random variable with support ½0;1Þ whose df is solution to (1). In case
2=, the solution’s support is R and reasoning in a similar way with the transforma-
tion expfxg, we also get a random variable with support ½0;1Þ whose df is solution
to (1). The proof of the theorem will follow from results concerning the solutions to
(1) satisfying inffv : FðvÞ > 0g ¼ 0. This will be done in Subsecs. 3.1 and 3.2.

Exploiting the periodic properties of the functions nk in Theorem 1, the
solution depends on the commensurability of the sequence (� log ci; i ¼ 1; . . . ;m).
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More precisely, we obtain

Corollary 2. Under the hypothesis of Theorem 1, it holds for MM distributions of
type I (respectively type II and type III):

(i) If (� log ci; i ¼ 1; . . . ;m) are commensurable with common period � log c,
then:

(a) jSþj ¼ 1 and the solution is a MSS distribution of type I (respectively
II and III).

(b) jSþj ¼ 2 and the solution is the maximum of two independent MSS
type I (respectively II and III) distributed random variables.

(ii) If (� log ci; i ¼ 1; . . . ;m) are non-commensurable, then:

(a) jSþj ¼ 1 and the solution is a Fréchet (respectively Weibull, Gumbel)
distribution.

(b) jSþj ¼ 2 and the solution is the maximum of two independent Fréchet
(respectively Weibull, Gumbel) distributed random variables.

Proof. We note that the periodicity condition for nk is equivalent to

nkðxÞ ¼ nk

�
xþ

Xm
i¼1

pixi

�
ð14Þ

with xi ¼ � log ci and for all pi 2 Z; i ¼ 1; . . . ;m. Two different cases then arise

� Lattice case: xi ¼ �ri log c; i ¼ 1; . . . ;m; c 2 ð0; 1Þ; ri 2 Z and gcdðriÞ ¼ 1.
The functions nk are identified with periodic functions with period � log c.

If jS1j ¼ 1, we recognize the distribution function of a MSS law. In the case
jS1j ¼ 2, F factorizes into the distributions of two independent random variables
(X1;X2) where each Xk is a MSS distributed random variable.

� Non-lattice: the periods xi are non-commensurable: only the constants
nðxÞ ¼ n are right-continuous bounded solutions of (14), since the setPm

i¼1 xiZ is dense in R. Now, like in the lattice case, the solutions are either
the max-stable df ðjS1j ¼ 1Þ or the product of two such max-stable
dfs ðjS1j ¼ 2Þ. This completes the proof.

3.1. Strictly Max-Multiscaling Laws of Type I

Consider therefore the functional Eq. (1) with ci 2 ð0;1Þnf1g. Proposition
below yields a formal solution to Eq. (1); by formal solution, we mean here a
solution not necessarily in the class of distribution functions.
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Proposition 3. Consider a random variable Vþ whose df , say FVþðvÞ, is solution
of the functional Eq. (1). Assume inffv : FVþðvÞ > 0g ¼ 0. Let S ¼ fa 2 R :Pm

i¼1 gic
a
i ¼ 1g. We have jSj 2 f0; 1; 2g and FVþðvÞ reads

FVþðvÞ ¼ exp

�
�
X
ak2S

v�ak skðlog vÞ
�
; ð15Þ

with the convention that the sum over the empty set is null. Here, skð:Þ are non-
negative periodic functions with periods � log ci; i ¼ 1; . . . ;m.

Proof. Under our hypothesis, 1 > FVþðvÞ > 0 for 1 > v > 0. Upon reasoning now
with the positive function HðxÞ :¼ � logFVþðexÞ, this functional equation takes the
simpler convolution form

HðxÞ ¼
Xm
i¼1

giHðxþ xiÞ ð16Þ

with xi ¼ � log ci. To solve this last equation, we shall now need to introduce the
structure function (using the terminology of Refs.[9,13]):

tðqÞ :¼
Xm
i¼1

gic
q
i ; q 2 R: ð17Þ

Under our hypothesis, it is positive and convex. As a result, the equation: tðaÞ ¼ 1
admits none, one or two solutions in R. Now, we are in the position to apply the
Lau–Rao–Shanbhag theorem (see p. 38 Corollary 2.3.2 of Theorem 2.3.1, p. 36 of
Ref.[20]) which states that the multiscaling function H takes the form

HðxÞ ¼
X
ak2S

e�akxskðxÞ: ð18Þ

Here, the functions sk are positive and periodic, that is satisfying skðxÞ ¼ skðxþ xiÞ,
for all i ¼ 1; . . . ;m. In terms of the df itself, we thus get the announced formal
solution of (1).

As FVþ must be the df of some random variable Vþ, additional conditions have
to be imposed. First, for a > 0, we shall denote by

Ea ¼ fs : R ! ð0;1Þ such that sðxÞ ¼ eanðxÞg;
for some right-continuous bounded periodic function n with periods xi ¼ � log ci for
i ¼ 1; . . . ;m, such that x� nðxÞ is non-decreasing function.

Proposition 4. Let Vþ be a non-degenerate random variable whose df , FVþ , is given
by Eq. (15) satisfying inffv : FVþðvÞ > 0g ¼ 0. Let Sþ :¼ fa > 0 :

Pm
i¼1 gic

a
i ¼ 1g.

Then jSþj 2 f1; 2g and necessarily ak 2 Sþ and sk 2 Eak. In other words, we have

FVþðvÞ ¼ exp

�
�

X
ak2Sþ

v�ak skðlog vÞ
�
:
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Proof. Consider the formal solution (15).

(i) If S ¼ ;, we get the degenerate solution Vþ ¼ 0.
(ii) If jSj ¼ 1, letting S ¼ fag, we get

FVþðvÞ ¼ expf�v�asðlog vÞg; v > 0: ð19Þ

As FVþ must be the df of some random variable Vþ, additional conditions
have to be imposed. First the non-negative function sð:Þ must be bounded.
Indeed, sðlog vÞ ¼ �va logFVþðvÞ; now, as �va logFVþðvÞ is locally
bounded and as sðxÞ is periodic, necessarily sðxÞ is bounded. Next, as
FVþð0Þ ¼ 0 and FVþð1Þ ¼ 1, necessarily, a must be a positive number.

Finally, the hazard function v�asðlog vÞ should be non-increasing with
v. In other words, if we let sðxÞ :¼ eanðxÞ, for some periodic function n with
periods xi ¼ � log ci, for i ¼ 1; . . . ;m, then: x� nðxÞ has to be a non-
decreasing function. Finally, it is necessary that nðxÞ be right-continuous.
Thus, we need to impose a > 0 and s 2 Ea.

(iii) If jSj ¼ 2, letting S ¼ fa1; a2g with, say a1 < a2, then we have

FVþðvÞ ¼ expf�½v�a1s1ðlog vÞ þ v�a2s2ðlog vÞ�g; v > 0 ð20Þ

where skðxÞ :¼ eaknkðxÞ; k ¼ 1; 2 are positive and periodic with the same
periods xi ¼ � log ci; i ¼ 1; . . . ;m. As FVþ must be the df of some random
variable Vþ, additional conditions have to be imposed. First each non-
negative function sk must be bounded; indeed,

skðlog vÞ � �vak logFVþðvÞ:

As �vak logFVþðvÞ is locally bounded and as sk is periodic, necessarily
kskk1 < 1. Using the same arguments, as for the case jSj ¼ 1; a1 and a2 must
be positive numbers.

Finally, e�a1xs1ðxÞ þ e�a2xs2ðxÞ should be non-increasing in such a way that the
hazard function � logFVþðvÞ be non-increasing with v. In other words, if we let
skðxÞ :¼ eaknkðxÞ, for some periodic functions nk with periods xi ¼ � log ci, for
i ¼ 1; . . . ;m, then

HðxÞ :¼ e�a1ðx�n1ðxÞÞ þ e�a2ðx�n2ðxÞÞ

should be a non-increasing function. Let HkðxÞ :¼ e�akðx�nkðxÞÞ; k ¼ 1; 2, we shall
show that both H1ðxÞ and H2ðxÞ should in fact be non-increasing.

Indeed, let z2 > z1. It is thus necessary that Hðz2Þ � Hðz1Þ. Now, as 0 < a1 < a2
and from the boundedness of sk:Hðz2Þ ¼ H1ðz2Þð1þ Eðz2ÞÞ, with EðxÞ ¼ H2ðxÞ=
H1ðxÞ!x"þ1 0. Finally, for any i 2 f1; . . . ;mg and for any n 2 Z, the condition
Hðz2Þ � Hðz1Þ also reads

H1ðz2 þ nxiÞ
H1ðz1 þ nxiÞ �

1þ Eðz1 þ nxiÞ
1þ Eðz2 þ nxiÞ :
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But, from the expression of H1 and the periodicity of n1ðxÞ, we get

H1ðz2 þ nxiÞ
H1ðz1 þ nxiÞ ¼

H1ðz2Þ
H1ðz1Þ :

Hence

H1ðz2Þ
H1ðz1Þ �

1þ Eðz1 þ nxiÞ
1þ Eðz2 þ nxiÞ �!

nxi"1
1:

As a result: H1ðz2Þ � H1ðz1Þ. In a similar way, nxi # �1, one can establish that
H2ðz2Þ � H2ðz1Þ. Finally, it is necessary that nkðxÞ be right-continuous and ak > 0
and sk 2 Eak , k ¼ 1; 2.

Putting all this material together, we have

Proposition 5. Consider a strictly type I max-multiscaling model of a non-
degenerate random variable Vþ. Assume inffv : FVþðvÞ > 0g ¼ 0. Its df , as a
solution of (1), reads

FVþðvÞ ¼ exp

�
�

X
ak2Sþ

v�ak skðlog vÞ
�

where Sþ ¼ fa > 0 :
Pm

i¼1 gic
a
i ¼ 1g and for each ak 2 Sþ, sk 2 Eak .

Proof. This easily obtained by combining Proposition 3 and Proposition 4.

Let us give a simple illustrative example corresponding to the case jSþj ¼ 2.

Example 1. Let m ¼ 2. Let c 2 ð0; 1Þ and c1 ¼ c, c2 ¼ c�1, in such a way that
c1 < 1 < c2. Let g1 ¼ 1 and g2 :¼ g > 0. Under these hypothesis, it may be checked
that the equation tðaÞ ¼ 1 admits two positive solutions if and only if 0 < g < 1=4
in which case these solutions are

0 < a1 ¼ � logc
1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4g
p
2g

� �
< a2 ¼ � logc

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4g

p
2g

� �
:

Thus Vþ ¼ maxðVþ
1 ;V

þ
2 Þ where ðVþ

1 ;V
þ
2 Þ are independent and whose dfs satisfy

FVþ
1
ðvÞ ¼ FVþ

1
ðv=cÞr1 and FVþ

2
ðvÞ ¼ FVþ

2
ðv=cÞr2, with ðr1 > 1; r2 > 1Þ defined by

r1 ¼ c�a1 ¼ 1�
ffiffiffiffiffiffiffiffi
1�4g

p
2g and r2 ¼ c�a2 ¼ 1þ

ffiffiffiffiffiffiffiffi
1�4g

p
2g .

As it was emphasized in Proposition 5 the number of positive solutions to
tðaÞ ¼ 1 is a central point in characterizing the solutions of the functional Eq. (1).
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We derive below, from an elementary study of the structure function tðqÞ, the
following corollary:

Corollary 6. (i) Let ci 2 ð0; 1Þ; i ¼ 1; . . . ;m. If
P

gi � 1 then jSþj ¼ 0. Else,P
gi > 1 and jSþj ¼ 1. In this last case, if ci ¼ cri for some c 2 ð0; 1Þ and ri 2 N,

then solution to (1) is a strictly MSS type I distribution; else, it is a Fréchet distribu-
tion.

(ii) Let ci > 1; i ¼ 1; . . . ;m. If
P

gi � 1 then jSþj ¼ 0. Else,
P

gi < 1 and
jSþj ¼ 1. In this last case, if ci ¼ cri for some c > 1 and ri 2 N, then solution to
(1) is a strictly MSS type I distribution; else, it is a Fréchet distribution.

(iii) If mini¼1;...;mðciÞ < 1 < maxi¼1;...;mðciÞ. If
P

gi < 1 then jSþj ¼ 1. IfP
gi ¼ 1 then jSþj 2 f0; 1g and if

P
gi > 1, then jSþj 2 f0; 2g.

Proof. (i) When ci 2 ð0; 1Þ; i ¼ 1; . . . ;m, the convex function tðqÞ satisfies
limq"þ1 tðqÞ ¼ 0; limq#�1 tðqÞ ¼ þ1 and tð0Þ ¼ P

gi. The result can easily be
obtained from this.

(ii) In this case we have limq"þ1 tðqÞ ¼ þ1; limq#�1 tðqÞ ¼ 0.

(iii) In this case, tðqÞ ! þ1 when q ! 	1:

3.2. Proof of Theorem 1

We start studying the support of the solution to (1).

The Solution’s Support. Let FðvÞ be the df of V and suppose that FðvÞ solves
(1) with ci 6¼ 1, i ¼ 1; . . . ;m. Let a :¼ inffv : FðvÞ > 0g � �1. If a is finite, necessa-
rily a ¼ 0 because, from (1), we have a ¼ maxi¼1;...;mðciaÞ. If a ¼ �1, then FðvÞ > 0
on the interval ½0;1Þ and reasoning on the restriction of F to ½0;1Þ, going along the
same lines as in the proof of Proposition 3, the restriction of F to ½0;1Þ leads to
Fð0Þ ¼ 0, which is absurd, or to FðvÞ ¼ 1 for all v > 0. In the latter case, reasoning
similarly, if b :¼ supfv : FðvÞ < 1g, then b ¼ maxi¼1;...;mðcibÞ and b ¼ 0.

Broad Sense Max-Multiscaling Laws of Type I. Consider a random variable
Vþ with support ½0;1Þ whose df satisfies (1) with all ci 6¼ 1. Let
Xþ :¼ Vþ þ xþ; xþ 2 R, be the shifted variable. Equivalently, its df satisfies the
functional Eq. (10), whose solution is given by (11) with ~xx ¼ xþ and
bi ¼ xþð1� 1=ciÞ. This is part (i) of case 1= in Theorem 1.

Multiscaling Distributions of Type II. Consider a random variable V� with
support ð�1; 0� whose df satisfies (1) with all ci 6¼ 1. Let Vþ :¼ �1=V� with
support ½0;1Þ. Its df satisfies the functional equation FVþðvÞ ¼

Qm
i¼1 FVþðvciÞgi of

the type (1). Let X� :¼ V� þ x�; x� 2 R, be the shifted variable. Equivalently, its
df satisfies functional Eq. (10) whose solution is given by (12), with ~xx ¼ x� and
bi ¼ x�ð1� 1=ciÞ. This completes the proof of case 1= part (ii) in Theorem 1.
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Multiscaling Laws of Type III. Consider a random variable X with support
R whose df satisfies (10) with all ci ¼ 1 and bi 6¼ 0. Let Vþ ¼ expfXg, with
support ½0;1Þ. Equivalently, its df satisfies the functional equation FVþðvÞ ¼Qm

i¼1 FVþðv=ciÞgi of the type (1) with ci ¼ expf�big. This completes the proof of
case 2= in Theorem 1.

3.3. Max-Multiscaling and (Semi-) Selfsimilarity

Let X be some random variable with df F . Consider the external process fXðtÞ;
t > 0g associated to F (see Refs.[3,24]). The process fXðtÞ; t > 0g is selfsimilar,[25]

with scaling exponent H and translational exponent ~xx if, for any B > 0

fXðBtÞ; t > 0g¼d f~xxþ BHðXðtÞ � ~xxÞ; t > 0g: ð21Þ

One may easily check that the extremal processes associated to Fréchet–Weibull
random variables are selfsimilar; Eq. (21) is fulfilled, with ðH ¼ 1=a; ~xx ¼ xþÞ and
ðH ¼ �1=a; ~xx ¼ x�Þ, respectively.[18] We say that fXðtÞ; t > 0g is translational

selfsimilar[25] with exponent H, if, for any B

fXðBtÞ; t > 0g¼d fXðtÞ þH log B; t > 0g: ð22Þ

One may check that the extremal Gumbel process is translational selfsimilar with

exponent H ¼ 1=a.
We now consider the extremal process associated to max-semistable distribu-

tions of types I and II. For some r > 1 and c 2 ð0; 1Þ related through rca ¼
1; a > 0, we get[19]

fXðrntÞ; t > 0g ¼d f~xxþ rnHðXðtÞ � ~xxÞ; t > 0g ð23Þ

for any n 2 Z, respectively, with ðH ¼ 1=a; ~xx ¼ xþÞ and ðH ¼ �1=a; ~xx ¼ x�Þ for
types I and II. This is the definition of semi-selfsimilarity from Ref.[25]. Equation
(21) is fulfilled only for those B of the particular form B ¼ rn, n 2 Z. Translational
semi-selfsimilarity is defined similarly,[25] consider the extremal process associated
to max-semistable distributions of type III. It satisfies Eq. (22) with H ¼ 1=a, only
at points B ¼ rn; n 2 Z, for some r > 1.

If jSþj ¼ 1 and in the lattice (non-lattice) case, the extremal process associated
toMM distributions are semi-selfsimilar (selfsimilar). Their 1-dimensional dfs are the
ones ofMSSðMSÞ random variables. If jSþj ¼ 2, althoughMM distributions take the
form of the product of two max-semistable (max-stable) dfs they are no longer max-
semistable (max-stable) by themselves. Their associated extremal processes are not
semi-selfsimilar (selfsimilar). Rather, it is the maximum of two semi-selfsimilar
(selfsimilar) extremal processes.
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4. MULTISCALING MODELS AS LIMIT LAWS UNDER
GEOMETRIC GROWTH

In this section, we show that max-multiscaling distributions may be seen as limit
laws for some renormalized maximum of independent but not necessarily identically
distributed random variables. Some work in this direction may be found in
Refs.[7,10,14–16,21,22].

It should be emphasized that we have no pretention here to fully characterize
the domain of attraction of max-multiscaling laws. In the case of MSS distributions,
final characterization results of their max-domain of attraction can be found in
Theorems 1–3 in Ref.[16].

4.1. The Max-Semistable Case: Preliminaries

Consider a particular lattice MM model with gi ¼ 1; ci ¼ cri ; c 2 ð0; 1Þ; ri 2 N;
i ¼ 1; . . . ;m, gcdðriÞ ¼ 1. This guarantees that we are in a max-semistable case with
a unique a > 0 defined by tðaÞ ¼ 1. Define now the integer-valued function nðrÞ of
r 2 N, recursively by

nðrÞ ¼ 1ðr
 > rÞ þ
Xm
i¼1

nðr � riÞ1ðri � rÞ; r 2 Nnf0g; nð0Þ ¼ 1; ð24Þ

with r
 :¼ maxi¼1;...;m ri. This sequence is a deterministic multitype branching process
for which the number of individuals at discrete time r is obtained as follows: at time
r ¼ 0, a single ancestor is available; this ancestor gives birth to m first generation
sons as a whole, a type �i son coming to life at time ri > 0. The ancestor dies at
time r
 when it gives birth to its last son. Each first generation son repeats the same
splitting program, starting from its birth time, and so forth for the subsequent
generations. This construction simply is a deterministic version of the age-
dependent Crump-Mode branching process. Using the renewal structure of nðrÞ
and singularity analysis of the generating function of fnðrÞ; r � 0g, we could check
that limr"1 nðrÞ1=r ¼ r, with r > 1 defined by

Pm
i¼1 r

�ri ¼ 1, and even that
nðrÞ �r"1 Krr , for some K > 0. Recalling that the condition tðaÞ ¼ 1 reads

Xm
i¼1

cai ¼
Xm
i¼1

cati ¼ 1;

we conclude that rca ¼ 1.
Let ðwj; j � 1Þ be a sequence of iid random variables, distributed like a random

variable w, with df Fw. Let ZðrÞ :¼ maxj¼1;...;nðrÞ wj. In the following proposition, we
will say that w is in theMDA of such type I (respectively II and III)MM models (all in
the MSS class) if there exists sðrÞ > 0 and xðrÞ such that eZZðrÞ :¼ ½ZðrÞ � xðrÞ�=sðrÞ;
r 2 N, converges in law to any of the type I (respectively II and III) models.
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Let b :¼ supfv : FwðvÞ < 1g. We have

Proposition 7. Sufficient conditions for w to be in the MDA of the three MSS types
are

Type I: b ¼ 1 and for some scale function s 2 Ea, some slowly varying
function L at 1

FwðvÞ � 1

K
� ðv=LðvÞÞ�a

sðlogðv=LðvÞÞÞ for large v ð25Þ

Type II: b < 1 and the df of �1=ðw� bÞ satisfies ð25Þ.
Type III: b � 1 and w has no atom at right-endpoint b; there exists x0 < b

such that for some Von Mises function exp
��R x

x0

a
aðuÞdu

�
with positive and

absolutely continuous auxiliary function aðuÞ satisfying a0ðuÞ !u"b 0, for some
scale function s 2 Ea and some function cðxÞ !x"b 1

FwðxÞ ¼ cðxÞ
K

� s
�Z x

x0

1

aðuÞdu
�
� exp �

Z x

x0

a
aðuÞdu

� �
; x0 < x < b: ð26Þ

Proof. Type I: First, define sðrÞ by ½sðrÞ=LðsðrÞÞ��a ¼ 1=rr (assuming without
loss of generality that L 2 C1, see Ref.[3], Proposition A3.5, p. 566) and let xðrÞ ¼ 0.
As rca ¼ 1, we note that sðrÞ=LðsðrÞÞ ¼ c�r . Second, with eðrÞ!r"10, we have

PðeZZðrÞ � vÞ ¼ ð1� FwðvsðrÞÞÞnðrÞ ¼ expf�nðrÞFwðvsðrÞÞð1þ eðrÞÞg:

From (25) and the definition of sðrÞ, we get: nðrÞFwðvsðrÞÞ �r"1 v�as

ðlogðvsðrÞ=LðvsðrÞÞÞÞ. As r 2 N and as sðlog vÞ has period � log c, it follows from
the definition of sðrÞ and the slowly varying character of L, that, at each point of
continuity of function s, it holds

PðeZZðrÞ � vÞ!
r"1

expf�v�asðlog vÞg

which is the df of some strictly MSS random variable of type I.

Type II: Exploiting the connection between distributions of MSS models of
type I and II this result can easily be obtained.

Type III: First, let xðrÞ 2 ðx0; bÞ and sðrÞ be defined by

exp

�
�
Z xðrÞ

x0

a
aðuÞ du

�
¼ 1=rr and sðrÞ ¼ aðxðrÞÞ: ð27Þ

As cðxÞ !x"b 1 and sð�Þ is positive and bounded, it holds that xðrÞ !r"1 b. When
b < 1, we have sðrÞ ¼ oðb� xðrÞÞ !r"1 0 (see Ref.[3], Proposition 3.3.24 and the
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remark that follows on p. 141). It holds xðrÞ þ xsðrÞ ! b for all x. From (26)
we have

PðeZZðrÞ � xÞ ¼ ð1� FwðxðrÞ þ xsðrÞÞÞnðrÞ

¼
�
1� cðxðrÞ þ xsðrÞÞ

Krr
s

�Z xðrÞþxsðrÞ

x0

1

aðuÞ du
�

� exp

�
�
Z xðrÞþxsðrÞ

xðrÞ

a
aðuÞdu

��nðrÞ
:

Now, from the choice of xðrÞ and sðrÞ in (27), and following Ref.[16], Lemma 2,

Z xðrÞþxsðrÞ

x0

1

aðuÞdu ¼
Z xðrÞ

x0

1

aðuÞduþ
Z xðrÞþxsðrÞ

xðrÞ

1

aðuÞdu ¼ �r log cþ xþ eðrÞ

where EðrÞ!r"1 0. As a result, under our assumptions

PðeZZðrÞ � xÞ ¼
�
1� cðxðrÞ þ xsðrÞÞ

Krr
sðx� r log cþ eðrÞÞ expf�aðxþ eðrÞÞg

�nðrÞ

Finally, since sðxÞ has period � log c, with c 2 ð0; 1Þ and as r 2 N, at each point of
continuity of s, we get

P

eZZðrÞ � x

� !
r"1

expf�sðxÞe�axg

which is the df of some MSS random variable of type III, as required (with
bi ¼ � log ci ¼ �ri log c).

Remark 2. This construction is a simple illustrative example of results obtained by
Ref.[16]. It provides an important building block of the maximum domain of attrac-
tion of MSS laws. However, as nðrÞ is given here in advance, with a natural connec-
tion with parameters ðgi ¼ 1; ci; i ¼ 1; . . . ;mÞ of this particular MM model, the full
domain of attraction, as described by Ref.[16], cannot be obtained in this way (see
the comment on p. 978 of Ref.[16]).

4.2. The Full Max-Multiscaling Case

In the MM model satisfying (1), let us now simply assume that
ci; gi > 0; i ¼ 1; . . . ;m are such that Sþ ¼ fa > 0 : tðaÞ ¼ 1g is not empty. We focus
on the lattice case when there exists c 2 ð0; 1Þ; ri 2 Z such that ci ¼ cri ; i ¼ 1; . . . ;m,
with gcdðjrijÞ ¼ 1.
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Let NðrÞ be a Poisson process with intensity lðrÞ satisfying the functional
equation

lðrÞ ¼
Xm
i¼1

gilðr � riÞ; 8r 2 Z: ð28Þ

Solutions of the type lðrÞ ¼ Krr with k > 0 and r > 0, exist if there exists r > 0
satisfying

Pm
i¼1 gir

�ri ¼ 1. Recalling that condition tðaÞ ¼ 1 reads

Xm
i¼1

gic
a
i ¼

Xm
i¼1

gic
ari ¼ 1; for each a 2 Sþ;

we can take r ¼ ra where, for each a 2 Sþ, raca ¼ 1 and ra > 1.
For each a 2 Sþ, we will denote by NaðrÞ the Poisson process with intensity

laðrÞ ¼ Karra, Ka > 0. Let lðrÞ :¼ P
a2Sþ laðrÞ. If jSþj ¼ 2, we assume these two

Poisson processes to be independent so that NðrÞ ¼ P
a2Sþ NaðrÞ is a Poisson pro-

cess with intensity lðrÞ. For each a 2 Sþ, let


Xa ¼d Xa;j; j � 1

�
be an iid sequence,

independent of NaðrÞ and let FaðvÞ be the df of Xa. If jSþj ¼ 2, we assume that

Xa ¼d Xa;j; j � 1; NaðrÞ

�
; a 2 Sþ, are mutually independent. Consider now the max

processes

ZaðrÞ :¼ max
j¼1;...;NaðtÞ

Xa;j and ZðrÞ :¼ max
a2Sþ

ZaðrÞ: ð29Þ

ZðrÞ can be interpreted as the maximum of independent random variables having
one of two specified distributions. We observe that ZðrÞ¼d maxj¼1;...;NðrÞ XjðrÞ, where

XðrÞ¼d XjðrÞ; j � 1

�
is an iid sequence for each r. Here, XðrÞ is defined as the

Bernoulli mixture: XðrÞ¼d BrXa1 þ ð1� BrÞXa2 , where S
þ ¼ fa1; a2g and Br 2 f0; 1g

is a Bernoulli random variable with PðBr ¼ 1Þ ¼ la1ðrÞ=
P

a2Sþ laðrÞ, independent
of ðXa1 ;Xa2Þ. Note that the sample ðXjðrÞ; j ¼ 1; . . . ;NðrÞ; r � 1Þ constitutes a trian-
gular array. In the following theorem, we will show that there exist sðrÞ > 0 and xðrÞ
such that

eZZðrÞ :¼ ½ZðrÞ � xðrÞ�=sðrÞ; r 2 N

converges in law (as r " 1) to any of the type I, II or III strictly MM models. We
have

Theorem 8. Let ba :¼ supfv : FaðvÞ < 1g. Sufficient conditions on Xas laws which
guarantee that eZZðrÞ converges in distribution to an MM law of the three types are

Type I: ba ¼ 1 and for some scale function sa 2 ea and some slowly varying
function L at 1

FaðvÞ � 1

Ka
� ½v=LðvÞ��a

saðlogðv=LðvÞÞÞ for large v and for each a 2 Sþ:

ð30Þ
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Type II: For each a; ba ¼ b < 1 and the df of �1=ðXa � bÞ satisfies ð30Þ.
Type III: For each a; ba ¼ b � 1 and Xa has no atom at b; there exists x0 < b

such that for some Von Mises function exp
��R x

xo

a
aðuÞdu

�
with positive absolutely

continuous auxiliary function aðuÞ satisfying a0ðuÞ !u"b 0, for some scale function
sa 2 Ea and some function caðxÞ!x"b 1

FaðxÞ ¼ caðxÞ
Ka

� sa
Z x

x0

1

aðuÞdu
� �

� exp �
Z x

x0

a
aðuÞ du

� �
; x0 < x < b: ð31Þ

Proof. Type I: First, let sðrÞ=LðsðrÞÞ ¼ c�r and xðrÞ ¼ 0. From the definition ofeZZðrÞ and the independence assumptions, we get

P

eZZðrÞ � v

� ¼ exp

�
�
X
a2Sþ

laðrÞFaðsðrÞvÞ
�
:

We note that, under our assumptions, ½sðrÞ=LðsðrÞÞ��a ¼ 1=rra for each a 2 Sþ.
Now,

laðrÞFaðsðrÞvÞ � v�asaðlogðvsðrÞ=LðvsðrÞÞÞÞ; for each a 2 Sþ:

As r 2 N and as saðlog vÞ has period � log c, then saðlogðvsðrÞ=LðvsðrÞÞÞÞ !r"1
saðlog vÞ for each a 2 Sþ and at each point of continuity of sa. It follows that, at
each such point

P

eZZðrÞ � v

� !
r"1

exp

�
�
X
a2Sþ

v�asaðlog vÞ
�

which is the df of some MM random variable of type I, in its full generality
ðjSþj 2 f1; 2gÞ.

Type II: Exploiting the connection between distributions of MM models of
type I and II this result can easily be obtained.

Type III: Let xðrÞ and sðrÞ be defined by

exp

�
�
Z xðrÞ

x0

1

aðuÞdu
�

¼ cr and sðrÞ ¼ aðxðrÞÞ:

Note that, for each a 2 Sþ, it holds: exp
��R xðtÞ

x0

a
aðuÞdu

� ¼ 1=rta. As it was done
for type I, adapting the proof of Propostion 7 concerning type III to the Poisson
structure of this model, our claim follows.

Remark 3. Since NaðrÞ=Karra ! 1 in probability ðas r " 1Þ, deterministic sample
sizes of the form naðrÞ � Karra would work as well. The advantage of considering
Poisson sample sizes is the natural connection with the original parameters
ðgi; ci; i ¼ 1; . . . ;mÞ suplied in (28) which parallels (24).
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5. DISCUSSION OF MAIN RESULTS AND PERSPECTIVES

Let us summarize the main results. The telling features of the class ofMSS distribu-
tions (as a first-step extension of MS ones) have been briefly introduced. We then focus
on the wider class of MM distributions. These can be defined as the fixed point of some
functional equations for their dfs. We identify the distribution functions being solutions
of these functional equations.MM laws are then shown to be limiting laws for maxima of
specific independent random variables when the sample size grows geometrically, after
some appropriate affine normalization. Further extensions of MM distributions are
presently under study, namely the ones obtained when m ¼ 1 and when randomizing
the integer m, and=or the location-scale and intensity parameters ðbi; ci; giÞ; i ¼
1; . . . ;m in (10), following the works of Refs.[4,11,13], in the context for sums.
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