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Abstract

L�eevy (semi-) stable processes are (semi-) self-similar and, as such, have recently drawn attention of many researchers.
On the other hand, there are lots of interesting (semi-) self-similar processes that are not in the L�eevy class. Here, we
focus on classes of Markov processes related to the extremal processes of L�eevy (semi-) stable ones that are all (semi-)
self-similar. These are instructive for those working in applied fields. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction and physical motivations

The statistical notions of stability and self-similarity have been introduced by Paul L�eevy in the 1940s. They have been
recognized as important ones in Physics and related fields more recently, starting from the 1970s (see

[1,4,14,30,34,42,44,45,47,48] and references therein).

We first recall these notions of interest both from the theoretical and practical points of view.

Stability

Here we recall some salient facts concerning one-sided (i.e. with positive support) stable random variables (see

[43,48] for a recent overview of these problems). The adjective stable refers to the well-known identity in distribution

for any c1 > 0; c2 > 0; there exists c > 0 : c1X1 þ c2X2¼d cX ;

with X ¼d X1¼d X2 mutually independent (with symbol ¼d standing for identity in law). These models are known [3,8,43]

to belong to a subclass of infinitely divisible (ID) random variables which are those for which the nth root of their

characteristic function still is a characteristic function for any nP 1 [46]. This notion is therefore closely related to the

one of L�eevy processes, that is with stationary independent increments (sii).
Besides, stable distributions derive their importance from the fact that they are the limit laws for sums of inde-

pendent and identically distributed (iid) random variables, say vm, mP 1, after a convenient location-scale transform,

which can be found in [48], for example, as well as striking motivations in Physics.

Similarly, there exists a concept of max-stability, substituting the symbol max to + in the above identity (see [15], for

example).
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Self-similarity

A stochastic process X ðtÞ, tP 0, is said to be self-similar if for any a > 0, there exists b > 0 such that

fX ðatÞ; tP 0g¼d fbX ðtÞ; tP 0g

meaning the identity in law for any finite-dimensional distributions.

Besides the stability property, one-sided L�eevy-stable processes are interesting in practice because they are the only
ones in the L�eevy class to possess the self-similarity property. Indeed, as is well-known, there exists an a 2 ð0; 1Þ such that
the associated L�eevy-stable process X ðtÞ shares the additional self-similarity property: for any t > 0

fX ðtÞ; tP 0g¼d ft1=aX ; tP 0g:

Here X ¼d X ð1Þ is a random variable. With E denoting mathematical expectation, we shall let uðkÞ :¼ Ee�kX denote

its Laplace Stieltjes transform (LST). For t > 0, the variable X ðtÞ is defined as the variable whose LST is

uX ðtÞðkÞ ¼ uðkÞt, raising u to the power t. This property is the one of infinite divisibility of X. The uni-dimensional

version of the above identity in law can then be interpreted as

uðkÞ ¼ uðt�1=akÞt for any t > 0:

Semi-stability

We now discuss a concept whose generality is larger than the one of stability, namely the one of semi-stability.

A one-sided semi-stable variable X is identified with one whose LST satisfies a functional equation of the form

uðkÞ ¼ uðckÞc; kP 0;

for some c > 0, c > 1. This is a scale-invariance property.

This notion of semi-stability was first introduced by Paul L�eevy in 1937 [22] (see [24, p. 45] for a survey on this point).
Additional references on these topics are [2,25–27]. The book [43] is the most instructive survey. Note that stable

variables are semi-stable.

Substituting the probability distribution function to the LST in the above functional equation, one obtains the class

of max-semi-stable variables (see [15], for example).

There are analogies between the concept of semi-stability (as a scale-invariance concept) and the one discussed in [47]

on discrete scale-invariance arising from Renormalization Group theory in Physics (see [16]).

One-sided semi-stable variables are thus ID; they contain the class of stable laws. L�eevy semi-stable processes can
easily be defined accordingly.

Besides, semi-stable variables constitute a subclass of semi-self-decomposable (itself a sub-class of ID ones) variables

in the following sense [43, p. 90]. A random variable X is said to be semi-self-decomposable if, for some c 2 ð0; 1Þ

X ¼d cX1 þ R;

where R is an ID positive random variable, independent of cX1, with X ¼d X1 (note that a stable distribution is self-
decomposable in that the above identity in law holds for any such c, with R¼d ð1� caÞ1=aX2 and X ¼d X2).

Semi-self-similarity

A stochastic process X ðtÞ, tP 0, is said to be semi-self-similar if there exist a 6¼ 1 and b > 0 such that

fX ðatÞ; tP 0g¼d fbX ðtÞ; tP 0g:

Note that a self-similar process is semi-self-similar.

Besides the semi-stability property, one-sided L�eevy semi-stable processes are interesting in practice because they are
the only ones in the L�eevy class to be semi-self-similar. Indeed, there exist c > 1 and a 2 ð0; 1Þ such that the associated
L�eevy semi-stable process X ðtÞ shares the additional semi-self-similarity property: for any t > 0

fX ðctÞ; tP 0g¼d fc1=aX ðtÞ; tP 0g:

It should be clear that, although the notions of (semi-) stability fit with the one of (semi-) self-similarity in the case of

L�eevy processes, the latter are much more general than the former. To take a famous example, the fractional Brownian
motion designed by Mandelbrot et al. and followers (see [7,14,29,30,41]) is well-known to be self-similar although not

even in the Markov processes’ class.
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We now come to the class of processes of interest in this manuscript which will serve as an additional illustration

of the previous remark. These are all processes of concrete interest, in the Markov class, that are (semi-) self-similar.

They are related to extremal processes of (semi-) stable L�eevy processes, as their largest positive jump process over
time.

We start with motivations on extremal processes related to compound Poisson processes. Although these are never

(semi-) self-similar, they will serve as a simple illustration of the extremal processes we wish to consider. Besides, they

will be used as weak approximations to design the announced models with the desired properties.

In many domains of applied physics and engineering, the space-time phenomenon to be studied presents itself as a

sequence of events with random amplitude occurring randomly over time. This can be for example a sequence of

earthquake magnitude over some region [13,33,49] or the sequence of damages met by the customers of some insurance

company in Finance [6], or alternatively the random users’ demands for network or energy resources in Telecommu-

nications’ or power supply management technology (see [6,23], for precise motivations and results in both Physics and

Finance).

In Section 2, the following simple statistical model for such sequences is considered: events of random iid amplitude,

say ðv; vm; mP 1Þ, occur randomly in time according to a Poisson process, say NðtÞ, with intensity mt, m > 0. This

process, say DðtÞ, is a continuous-time process called the jump (or amplitude) process which at time tP 0 is in state vNðtÞ
if NðtÞ > 0, x0 otherwise, with x0 the left-endpoint of the support of v’s distribution.
Upon cumulating these magnitudes over time, we are left with a simple compound Poisson process X ðtÞ which

integrates the previous jump process.

In this context, the largest magnitude process (or largest jump extremal process) obtained while considering the

maximum amplitude over past records is of particular interest. Also, the time to failure process which is the first time at

which some magnitude will cross some pre-assigned magnitude level deserves special attention; exchanging the roles of

space (magnitude) and time yields an ‘‘inverse’’ extremal process which interprets as the time at which the jump process

first crosses clock time. The purpose of Section 2 is to derive the structure of both extremal and inverse extremal

processes and to study some of their interesting properties, under the announced hypothesis for the jump process. It

turns out that the first process has a Markov structure, whereas the second one is a process with independent but

unstationary increments.

In many of the examples of interest discussed above, an additional characteristic feature of the phenomenon under

study is the following: events of tiny amplitude (say larger than but close to some threshold e > 0, with small e) are
extremely numerous or frequent.

To take an example, an important feature of earthquake catalogs is that, although data on small earthquakes are

strongly deficient, due to incomplete, bad registration of low magnitude events, these are certainly extremely numerous.

One way to address this problem would have been to consider the data as a realization of a truncated distribution; in

effect, this amounts to the assumption that there exists some fixed detection threshold above which all earthquakes are

recorded. Such a threshold could have been either estimated from the data or deduced from physical considerations, at

the price of discarding part of the data. Lowering this threshold, a huge amount of small events will certainly emerge.

On the other hand, these are punctuated with some rare events but with comparatively very large macroscopic

amplitude (the ones of interest to the Engineer): the physical image is therefore the one of bursts of activity immersed in

an ocean of ‘‘insignificant’’ microevents (a coarse version of L�eevy white noise).
We first investigate properties of such models when the amplitude, say ve, follows a heavy-tailed [1,44] Pareto

distribution of parameter a over ½e;1Þ of the form
Prðve > xÞ ¼ ðx=eÞ�a; xP e; a > 0; ð1:1Þ

and when the underlying Poisson process has intensity e�at (traducing the desired properties).
When a 2 ð0; 1Þ, performing the Poisson sum of such iid magnitude’s sequence, and passing to the limit e # 0 yield

the celebrated one-sided L�eevy-stable process.
When a > 0, computing the Poisson maximum of such iid magnitude processes, and passing to the limit e # 0 yield a

process to be identified with the Fr�eechet extremal process. Some properties (essentially the dependence structure) of this
limiting process and of the associated inverse Fr�eechet process are supplied, exploiting the constructions of Section 2.
Related processes such as Gumbel extremal processes are also briefly investigated. It turns out that all these limiting

processes are self-similar, illustrating the fact that self-similarity may be compatible with different processes’ Markov

structures. All this is the purpose of Section 3.

In Section 4, a related class of self-similar processes is next studied in some detail, namely the class of Geometric

L�eevy and Fr�eechet processes. They are obtained while subordinating the standard L�eevy, Fr�eechet-stable processes in self-
similar Exponential time.

It turns out that these limiting Geometric processes (L�eevy, Fr�eechet) are also self-similar.

T. Huillet, M. Ben Alaya / Chaos, Solitons and Fractals 14 (2002) 725–744 727



In Section 5, we consider a L�eevy semi-stable process, extending the previous construction. His extremal and inverse
extremal processes are studied. These may be obtained, as before, as limiting processes when the amplitude, say ve,

follows now a distribution over ½e;1Þ of the more general form

Prðve > xÞ ¼ 1

me
x�a exp amðlog xÞ; xP e; ð1:2Þ

for some normalization constant me > 0. Here, for some constant c > 0, m is a bounded periodic function with period
� log c on the real line. It turns out that all these limiting processes are semi-self-similar.
In Section 6, a related class of semi-self-similar processes is finally investigated. They are the Geometric L�eevy semi-

stable and Geometric Fr�eechet max-semi-stable processes. These semi-self-similar processes are obtained while

subordinating the L�eevy, Fr�eechet semi-self-similar processes in Exponential time. In the sequel, we will speak of Fr�eechet
semi-stable processes in place of Fr�eechet max-semi-stable processes.

2. Largest jump process of a compound Poisson process and its inverse

In this section, we supply the construction of the largest jump (extremal) and time to failure processes when the

jumps’ sum process is a standard compound Poisson process. Some of their statistical properties are supplied. Similar

considerations and physical motivations into this problem can be found in [23] and the references therein.

2.1. Largest jump extremal process

Assume ðX ðtÞ; tP 0Þ is a compound Poisson process hence with random stationary independent increments, say v;
we let x0 :¼ infðx : Prðv6 xÞ > 0Þ be the bottom value (or left endpoint) of the support of v’s distribution. We assume in
the sequel that Prðv6 xÞ is a continuous function of x. Then, from the Poisson structure

Ee�kX ðtÞ ¼ e�mtð1�E e�kvÞ ð2:1Þ

with Ee�kv the LST of the increment random variable (the jump height v). It is well-known that X ðtÞ is a Poisson sum of
its increments

X ðtÞ ¼ 0 
 1ðNðtÞ ¼ 0Þ þ
XNðtÞ

m¼1
vm

" #

 1ðNðtÞ > 0Þ; tP 0; ð2:2Þ

where NðtÞ, tP 0, is a standard Poisson process with intensity ENðtÞ ¼ mt, m > 0.

Next, we consider the continuous-time pure jump process

DðtÞ :¼ x0 
 1ðNðtÞ ¼ 0Þ þ ½vNðtÞ� 
 1ðNðtÞ > 0Þ; tP 0; ð2:3Þ

which is the jump process associated to the cumulative jump process X ðtÞ, tP 0. We let

X�ðtÞ :¼ max
s6 t

DðsÞ ð2:4Þ

be the associated largest jump (or extremal) process. Clearly,

X�ðtÞ ¼ maxðx0; v1; . . . ; vNðtÞÞ ð2:5Þ

and, with xP x0

PrðX�ðtÞ6 xÞ ¼ Ee�kNðtÞ jk¼� log Prðv6 xÞ¼ e�mt Prðv>xÞ: ð2:6Þ

We note from this expression that the distribution of X�ðtÞ has an atom at x ¼ x0, with probability mass e�mt (the

probability that no jumps occurred before time t).

More generally, exploiting the Poisson structure of NðtÞ, for any nP 1, with x06 x1 < 
 
 
 < xn and

0 ¼ t06 t1 < 
 
 
 < tn, we get the finite-dimensional distributions

PrðX�ðt1Þ6 x1; . . . ;X�ðtnÞ6 xnÞ ¼
Yn
k¼1

PrðX�ð1Þ6 xkÞtk�tk�1 ð2:7Þ

with

PrðX�ð1Þ6 xÞ ¼ e�mPrðv>xÞ: ð2:8Þ

We now list some properties of the extremal process.
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1. Markov structure

From (2.5), the process fX�ðtÞ; tP 0g is Markovian with global stationary transition probabilities for t1 < t2

PrðX�ðt2Þ6 x2 jX�ðt1Þ ¼ x1Þ ¼ e�mðt2�t1ÞPrðv>x2Þ1ðx16 x2Þ ð2:9Þ

exploiting again the Poisson structure of NðtÞ, tP 0. Besides, it is a pure jump process.

More precisely, given that, for some time s > 0, X�ðsÞ ¼ x1, the holding time at x1 before the next jump is expo-
nentially distributed with frequency parameter mPrðv > x1Þ, depending on x1. Given now that a jump is due to occur at
time t under interest, the process X�ðtÞ jumps from x1 to ðx0; x2� with local probability transition

Kðx2; x1Þ ¼ 1

�
� Prðv > x2Þ
Prðv > x1Þ

�

 1ðx16 x2Þ ð2:10Þ

independent of time. Indeed, if this is so, and if X�ðtÞ is Markov

ot PrðX�ðtÞ6 x2Þ ¼
Z

Kðx2; x1ÞmPrðv > x1Þ dPrðX�ðtÞ6 x1Þ; ð2:11Þ

where the integral is over the variable x1. From the expression of the transition kernel K, the solution to this Chapman–

Kolmogorov equation is easily seen to be PrðX�ðtÞ6 x2Þ ¼ e�mt Prðv>xÞ, as required.

A discrete version of this process may be of interest. Let indeed ðSn; nP 1Þ be the times of successive jumps of X�ðtÞ
and let ðX�;n :¼ X�ðSnÞ; nP 1Þ. The sequence ðX�;n; nP 1Þ is a discrete Markov process with initial distribution

PrðX�;16 xÞ ¼ Prðv6 xÞ and transition kernel K.
We next have the recurrence for nP 1,

PrðX�;nþ16 x2Þ ¼
Z

Kðx2; x1Þ dPrðX�;n 6 x1Þ: ð2:12Þ

To be complete, some knowledge on the number of jumps, say N�ðtÞ, in the interval ð0; t�, of the extremal process can
next be of some use.

2. The number of jumps in the extremal process

It is not hard to see that, with Mm�1 :¼ maxðv1; . . . ; vm�1Þ, M0 :¼ x0,

N�ðtÞ ¼
XNðtÞ

m¼1
1ðvm > Mm�1Þ ð2:13Þ

if NðtÞ > 0, zero otherwise. The events

ðvm > Mm�1;mP 1Þ :¼ ðvm > v1; . . . ; vm > vm�1;mP 1Þ

are called record values for ðvm;mP 1Þ and are clearly mutually independent. Besides,

Prðvm > Mm�1Þ ¼
Z
Prðv6 xÞm�1 dPrðv6 xÞ ¼ 1=m: ð2:14Þ

Thus N�ðtÞ is a Poisson sum of independent Bernoulli random variables Bm :¼ 1ðvm > Mm�1Þ, with PrðBm ¼ 1Þ ¼ 1=m.
Given NðtÞ ¼ n, it is well-known and may be checked that

1

log n

Xn

m¼1
Bm !a:s:

n"1
1 ð2:15Þ

so that the number of jumps in the extremal process is only of order log n, for large n.

2.2. Inverse of the largest jump process

With xP x0, let next

T ðxÞ :¼ infðt > 0 : DðtÞ > xÞ ð2:16Þ

be the associated time between failure process that is the inverse process of X�ðtÞ.
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This process has non-decreasing sample paths (and so is said to be a subordinator, in the sense of Bochner).

Besides

PrðT ðxÞ > tÞ ¼ PrðX�ðtÞ6 xÞ ¼ e�mt Prðv>xÞ: ð2:17Þ

Upon exchanging the roles of time and space, we get the inverse process, say ZðtÞ, tP t0 :¼ x0, of the largest jump
process X�ðtÞ, tP 0.

This process is defined from (2.16) as

ZðtÞ :¼ infðs > 0 : X�ðsÞ > tÞ ð2:18Þ

i.e., as the first time at which Dð
Þ ðor X�ð
ÞÞ exceeds clock time tP t0.
It is a pure jump process and

PrðZðtÞ > xÞ ¼ e�mxPrðv>tÞ: ð2:19Þ

Thus, ZðtÞ has an exponential distribution with mean value 1=m Prðv > tÞ, and

ZðtÞ¼d 1=ðmPrðv > tÞÞ 
 E; ð2:20Þ

where E is a standard exponential variable such that PrðE > xÞ ¼ exp�x, x > 0.

More generally, for any nP 1, with 06 x1 < 
 
 
 < xn and t0 :¼ x06 t1 < 
 
 
 < tn,

PrðZðt1Þ > x1; . . . ; ZðtnÞ > xnÞ ¼
Yn
k¼1
e�mðxk�xk�1ÞPrðv>tk Þ ð2:21Þ

giving the finite-dimensional distribution of the inverse process.

Under this form, it is clear that fZðtÞ; tP x0g is an exponential process with independent (but not stationary)
increments. Indeed, from (2.19), we get

Ee�kZðtÞ ¼ mPrðv > tÞ
mPrðv > tÞ þ k

; ð2:22Þ

which is the LST of an exponential distribution. This expression admits the alternative ID representation

Ee�kZðtÞ ¼ exp�
Z þ1

0

ð1� e�kxÞ 1
x
e�mxPrðv>tÞ dx ð2:23Þ

using the obvious identity

logð1þ kÞ ¼
Z þ1

0

ð1� e�kxÞ 1
x
e�x dx: ð2:24Þ

The expression (2.23) turns out to be the L�eevy representation for an inhomogeneous compound Poisson process
with independent (but unstationary) increments. For such processes, it is known [46] that, for tP t0, the following
L�eevy-Khintchine representation holds:

Ee�kZðtÞ ¼ Ee�kZðt0Þ 
 exp�
Z t

t0

Z þ1

0

ð1� e�kxÞ dKðsÞ � dpsðxÞ: ð2:25Þ

Here,

dKðtÞ � dptðxÞ ð2:26Þ

is the space-time L�eevy measure for jumps which informs on the rate at which events occur jointly with the jump’s height
as a function of the occurrence time of this jump.

In (2.25), Ee�kZðt0Þ ¼ m=ðmþ kÞ is the LST of an independent initial condition Zðt0Þ with exponential distribution of
parameter m. Besides, the intensity KðtÞ, tP t0 :¼ x0, is easily identified to be

KðtÞ ¼ � log Prðv > tÞ ð2:27Þ

and the conditional jump’s height is exponentially distributed with time-dependent parameter mPrðv > tÞ, that
is

dptðxÞ ¼ mPrðv > tÞe�mxPrðv>tÞ dx: ð2:28Þ
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3. Largest positive jump process of a L�eevy process and its inverse: the Fr�eechet and inverse Fr�eechet processes

We shall now apply the above findings to a particular class of Poisson jump processes, parameterized by e > 0, which

is the lowest endpoint of the jump’s height assumed Pareto distributed. For a suitable choice of the intensity of the

underlying Poisson process, in the limit e # 0, we shall find the self-similar L�eevy–Fr�eechet processes for the associated sum
and extremal processes.

3.1. One-sided L�eevy-stable processes

Assume X ðtÞ is a standard one-sided L�eevy-stable process [3]. Then, with a 2 ð0; 1Þ, C the Euler function and

a :¼ Cð1� aÞ > 0,

Ee�kX ðtÞ ¼ e�atka
: ð3:1Þ

Note from (3.1) that

X ðtÞ¼d t1=aLa; tP 0; ð3:2Þ

where La is a standard positive L�eevy variable, with

Ee�kLa ¼ exp�aka: ð3:3Þ

This process is known to be with stationary independent increments and self-similar with scaling exponent 1=a.
Besides, its sample paths are non-decreasing and is therefore a subordinator. However, it is not, strictly speaking, in the

compound Poisson class. Rather, a L�eevy process is a limiting compound Poisson process [8,46] and we shall now recall
in which sense.

First recall the identity (which may be checked upon integrating by part)Z þ1

0

ð1� e�kxÞ dpðxÞ ¼ aka; with pðxÞ ¼ �x�a; x > 0: ð3:4Þ

Here dpðxÞ is a positive Radon exponent measure on ð0;þ1Þ (known as L�eevy spectral measure), with infinite total
mass, due to the algebraic divergence of its density in the vicinity of zero. As this density: dpðxÞ=dx ¼ ax�ð1þaÞ is not a

probability density, a L�eevy process, for which (3.1) holds, is not stricto sensu a compound Poisson process (compare
with (2.1)); rather, it can be obtained from a ‘‘coarse’’ compound Poisson process X eðtÞ in the limit e # 0.
Let indeed e > 0; consider the compound Poisson process X eðtÞ, tP 0, defined by an exponentially distributed

holding time with parameter me and with iid positive increments, say ve, with normalized truncated probability dis-

tribution

Prðve > xÞ ¼ x�a

me

 1ðxP eÞ: ð3:5Þ

We note that this is a Pareto distribution in the heavy-tailed class with tail index a: jumps with very large amplitude
are very likely to occur in the sample paths of X eðtÞ.
From (3.5) the normalization constant is easily obtained. It is

me ¼
Z þ1

e
ax�ð1þaÞ dx ¼ e�a ð3:6Þ

and me tends to infinity as e tends to zero. Next, we form the quantity Ee�kX eðtÞ. From (2.1), it is, with Ee�kve
, the Laplace

transform of ve’s distribution

Ee�kX eðtÞ ¼ e�metð1�E ekve Þ: ð3:7Þ

Now, from (3.5) and (3.6)

með1� EekveÞ ¼
Z þ1

e
ð1� e�kxÞ dpðxÞ!

e#0
aka; ð3:8Þ

which is consistent with (3.1) and (3.4).

Thus, X ðtÞ defined from (3.1) is the limiting compound Poisson process X eðtÞ as e # 0 and is indeed a process with iid
increments.
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Compound Poisson subordinators exhibit finitely many isolated jumps on finite time intervals. This is not the case

for L�eevy ones: the many jumps with tiny amplitudes contribute in the limit to a H€oolder continuous drift, with H€oolder
exponents in the range ½0; 1=a� [17], as a result of jumps’ clustering in the limit. This drift is punctuated with a few very
large Pareto-like jumps. Globally, from (3.2), the process drifts to infinity much faster than clock time t, as a result of

the very large jumps which occur.

We shall now apply the constructions of Section 2 to the coarse compound Poisson version X eðtÞ of the L�eevy
subordinator X ðtÞ. As e # 0, we shall get a limiting version of the associated extremal process, with its inverse. We shall
find, in the limit, processes to be identified with Fr�eechet and inverse Fr�eechet processes [39,40]. Some of their remarkable
properties are then addressed.

3.2. Fr�eechet process and inverse in the range a 2 ð0; 1Þ

Consider the coarse compound Poisson version X eðtÞ of the L�eevy subordinator X ðtÞ defined previously with index
a 2 ð0; 1Þ. With me ¼ e�a defined in (3.6), and jumps’ height defined in (3.5), with range xP e :¼ x0.
With N eðtÞ a Poisson process with intensity met, define the associated jump process by

DeðtÞ :¼ e 
 1ðN eðtÞ ¼ 0Þ þ ½ve
N eðtÞ� 
 1ðN eðtÞ > 0Þ; tP 0: ð3:9Þ

Following Section 2, the associated extremal process is therefore

X e
� ðtÞ ¼ maxðe; ve

1; . . . ; v
e
N eðtÞÞ: ð3:10Þ

For any nP 1, its finite-dimensional distribution is

PrðX e
� ðt1Þ6 x1; . . . ;X e

� ðtnÞ6 xnÞ ¼
Yn
k¼1
e�ðtk�tk�1Þx�a

k ð3:11Þ

with e ¼ x06 x1 < 
 
 
 < xn, 0 ¼ t06 t1 < 
 
 
 < tn.
As a result, with xP e, we get

PrðT eðxÞ > tÞ ¼ PrðX�ðtÞ6 xÞ ¼ e�met Prðve>xÞ ¼ e�tx�a
; ð3:12Þ

where

T eðxÞ :¼ infðt > 0 : DeðtÞ > xÞ ð3:13Þ

is the time to failure process of DeðtÞ. Upon exchanging the roles of time and space, we get the inverse process, say ZeðtÞ,
tP e, of the largest positive jump process DeðtÞ, tP 0, and

PrðZeðtÞ > xÞ ¼ e�xt�a
: ð3:14Þ

More generally, with 06 x1 < 
 
 
 < xn and e ¼ t06 t1 < 
 
 
 < tn

PrðZeðt1Þ > x1; . . . ; ZeðtnÞ > xnÞ ¼
Yn
k¼1
e�ðxk�xk�1Þt�a

k ð3:15Þ

gives the finite-dimensional distributions of the inverse process. As e # 0, we get

fX e
� ðtÞ; tP 0g!d fX�ðtÞ; tP 0g; fZeðtÞ; tP 0g!d fZðtÞ; tP 0g ð3:16Þ

with the limiting process fX�ðtÞ; tP 0g and fZðtÞ; tP 0g defined by their finite-dimensional distributions. Sometimes we
shall index the limiting extremal process by a, say according to X�ðtÞ ¼ X�;aðtÞ, to underline its dependence on the
parameter a.
More precisely, for any nP 1, and 06 x1 < 
 
 
 < xn, 06 t1 < 
 
 
 < tn, these finite-dimensional distributions are given

by

PrðX�;aðt1Þ6 x1; . . . ;X�;aðtnÞ6 xnÞ ¼
Yn
k¼1
e�ðtk�tk�1Þx�a

k ð3:17Þ

and

PrðZðt1Þ > x1; . . . ; ZðtnÞ > xnÞ ¼
Yn
k¼1
e�ðxk�xk�1Þt�a

k ð3:18Þ

with the convention t0 ¼ x0 ¼ 0.
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We note in particular that

PrðX�ðtÞ6 xÞ ¼ PrðX�ð1Þ6 xÞt ð3:19Þ

with

PrðX�ð1Þ6 xÞ ¼ e�x�a
; x > 0; ð3:20Þ

a Fr�eechet distribution [6,9].
For this reason, the limiting extremal process fX�ðtÞ; tP 0g is called a Fr�eechet process and we have found that, when

a 2 ð0; 1Þ, the extremal Fr�eechet process is the largest positive jump process associated to a L�eevy a-stable subordinator.
Note from (3.19) and (3.20) that

X�ðtÞ¼d t1=aX�ð1Þ; tP 0: ð3:21Þ

This process drifts to infinity faster than clock time t.

3.2.1. Additional properties of the Fr�eechet process
We list below some statistical properties of interest (see also [6,39]).

1. Markov structure

From (3.19) and (3.20), the distribution of X�ðtÞ has no atom at x ¼ 0. In the vicinity of t ¼ 0 the sample paths of

X�ðtÞ are H€oolder continuous: only after some finite time, say s0 ¼ 1, is ðX�ðtÞ; tP s0Þ a pure jumpMarkov process. This
process is stochastically continuous with right-continuous sample paths [39].

More precisely, from the previous construction, given that for some time s > 0, X�ðsÞ ¼ x1, the holding time at x1
before the next jump is exponentially distributed with frequency parameter x�a

1 , depending on x1. Given now that a

jump is due to occur at time t under interest, the process X�ðtÞ jumps from x1 to ð0; x2� with local probability transi-
tion

Kðx2; x1Þ ¼ 1

�
� x2

x1

� ��a�

 1ðx16 x2Þ ð3:22Þ

independent of time.

2. Multiplicative structure

A discrete version of this process may be of interest. Let indeed ðSn; nP 1Þ be the times of successive jumps of X�ðtÞ
after time s0 ¼ 1, and let

ðX�;n :¼ X�ðSnÞ; nP 1Þ; X�;0 :¼ X�ðs0 ¼ 1Þ: ð3:23Þ

The sequence ðX�;n; nP 0Þ is a discrete Markov process with initial distribution PrðX�;06 xÞ ¼ exp�x�a and in-

stantaneous transition kernel K.

We therefore have the recurrence for nP 0

PrðX�;nþ16 x2Þ ¼
Z x2

0

1

�
� x2

x1

� ��a�
d PrðX�;n 6 x1Þ: ð3:24Þ

Observing that

1

�
� x2

x1

� ��a�
¼ Pr P

�
6
x2
x1

�
;

where P is a Pareto random variable with support ð1;1Þ, with exponent a, we get, upon iterating, that X�;n has the

multiplicative structure

X�;n¼d X�;0
Yn
m¼1

Pm; ð3:25Þ

where ðP ; Pm;mP 1Þ is an iid sequence of Pareto variables such that PrðP > xÞ ¼ x�a, xP 1, independent of the initial

Fr�eechet variable X�;0.
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There remains to say a few words on the number of jumps N�ð1; t�, in the interval ð1; t�, of the extremal process X�ðtÞ.
Following [39], it is non-homogeneous Poisson process with intensity EN�ð1; t� ¼ log t, in such a way that

PrðN�ð1; t� ¼ nÞ ¼ 1

n! 
 t ðlog tÞ
n
; nP 0: ð3:26Þ

As time goes by, the occurrence of a new record value becomes less probable.

Finally we have the following multiplicative description of X�ðtÞ:

X�ðtÞ¼d X�ð1Þ
YN�ð1;t�

m¼1
Pm; ð3:27Þ

which is the multiplicative structure property.

3. Self-similarity

The Fr�eechet extremal process X�ðtÞ is self-similar in the sense that, for any nP 1, c > 0, and 06 t1 < 
 
 
 < tn, we have

ðX�;aðct1Þ; . . . ;X�;aðctnÞÞ¼d c1=aX�;aðt1Þ; . . . ; c1=aX�;aðtnÞ
� 	

; ð3:28Þ

which may be checked from (3.17). The self-similarity (scaling) exponent is 1=a. The Fr�eechet extremal process is thus an
example of a self-similar Markov process.

3.2.2. Additional properties of the inverse Fr�eechet process
We list below some statistical properties of interest (see also [40]).

1. Independent unstationary increments

From the previous study, the inverse Fr�eechet process fZðtÞ; tP 0g has independent increments with space-time L�eevy
measure for jumps dKðtÞ � dptðxÞ, in the sense that

Ee�kZðtÞ ¼ 1

1þ kta
¼ exp�

Z t

0

Z þ1

0

ð1� e�kxÞ dKðsÞ � dpsðxÞ: ð3:29Þ

The intensity Kðt; t þ sÞ :¼
R tþs
t dKðsÞ, for t > 0, s > 0, is easily identified to be

Kðt; t þ sÞ ¼ � log ðt þ sÞ�a

t�a
¼ a log

t þ s
t

: ð3:30Þ

As t # 0, the expected number of jumps Kðt; t þ sÞ in the interval ðt; t þ s� tends to infinity like � logðt=sÞ: as for the
extremal process, in an inverse Fr�eechet process, the expected number of jumps tends to infinity in the vicinity of t ¼ 0.

The conditional jump’ height is exponentially distributed with time-dependent mean value ta

dptðxÞ ¼ t�ae�xt�a
dx: ð3:31Þ

Globally, with E an exponential variable, fZðtÞ; tP 0g is such that

ZðtÞ¼d ta 
 E; tP 0; ð3:32Þ

as

PrðZðtÞ > xÞ ¼ e�xt�a
; x; t > 0: ð3:33Þ

As time goes to infinity, it drifts much slower than clock time.

2. Self-similarity

The inverse Fr�eechet process ZðtÞ is also self-similar in the sense that, for any nP 1, c > 0, and 06 t1 < 
 
 
 < tn, we
have

ðZðct1Þ; . . . ; ZðctnÞÞ¼d caZðt1Þ; . . . ; caZðtnÞð Þ; ð3:34Þ

which may be checked from (3.18). The self-similarity (scaling) exponent is a. The inverse Fr�eechet process is thus an
example of a self-similar process with independent unstationary increments.
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3.2.3. A connection between the direct and inverse Fr�eechet processes
An additional property which may be checked from (3.17) and (3.18), connecting the extremal Fr�eechet process X�ðtÞ

and its inverse ZðtÞ, is the following: the process

ðZðt�1=aÞ�1=a; t > 0Þ ð3:35Þ

is a left-continuous version of the Fr�eechet extremal process. In particular, from (3.33)

PrðZðt�1=aÞ�1=a 6 xÞ ¼ e�tx�a
: ð3:36Þ

Thus the extremal Fr�eechet process is some ‘‘output’’ of an inverse Fr�eechet process after some suitable deterministic
change of time.

3.3. Fr�eechet process and inverse in the range a > 1

Fr�eechet processes are also defined in the parameter range a > 1. Let us now exhibit the connection between such

processes and L�eevy-stable subordinators.
If a > 1, we start with the L�eevy subordinator with index 1=a < 1. Following the preceding steps, we construct the

associated extremal Fr�eechet process, say X�;1=aðtÞ with finite-dimensional distribution

PrðX�;1=aðt1Þ6 y1; . . . ;X�;1=aðtnÞ6 ynÞ
Yn
k¼1
e�ðtk�tk�1Þy

�1=a
k : ð3:37Þ

Then, consider the output extremal process

fX�;aðtÞ :¼ X�;1=aðtÞ1=a
2

; tP 0g: ð3:38Þ

We get

PrðX�;aðt1Þ6 x1; . . . ;X�;aðtnÞ6 xnÞ ¼
Yn
k¼1
e�ðtk�tk�1Þx�a

k ; ð3:39Þ

which is a Fr�eechet process with parameter a > 1.

Thus, a Fr�eechet process with parameter a > 1 is the largest positive jump process associated to a L�eevy subordinator
with index 1=a < 1, raised to the power 1=a2. The inverse Fr�eechet process in this parameter range is similar to the one
discussed previously in the range a 2 ð0; 1Þ. However, as a > 1, it drifts to infinity much faster than clock time.

Remark 1. As is well-known, the L�eevy subordinator X ðtÞ defined in (3.1) is ill-defined when a P 1 (this may be checked

while observing that in this case the LST is not a completely monotone function of the Laplace argument). However,

the coarse compound Poisson version X eðtÞ defined in (3.9) still makes sense, even if a P 1. The associated jump and

extremal processes DeðtÞ and X e
� ðtÞ are also well-defined and X�ðtÞ :¼ limX e

� ðtÞ does exist in the limit e # 0, even for
aP 1. The latter is obviously the Fr�eechet process for a P 1, with finite-dimensional distributions given by (3.39). This

stands for an alternative construction of Fr�eechet and inverse Fr�eechet processes in the range a P 1.

3.4. Related extremal process: Gumbel process

It is a very common feature in Physics that observables are modeled through the logarithms of other quantities with

much more ‘‘appealing’’ meaning, such as the ‘‘energy’’ or magnitude of some underlying phenomenon or process. The

distinctive feature of the logarithmic scale for observable is that it measures the distance between two magnitudes

through their ratio rather than their difference; this transformation thus supplies a discrimination power between two

physical signals which is insensitive to their absolute intensities in that it essentially deals with their ratio. Consequently,

it is argued that the logarithm of the Fr�eechet extremal process should stand for most relevant statistical models for the
extremal magnitude process measured in logarithmic scale. We shall now say a few words on this process.

If a > 0, a 6¼ 1, consider the output process

Y�ðtÞ ¼ a logX�;aðtÞ: ð3:40Þ

We note from (3.38) that if a > 1, this process is also Y�ðtÞ ¼ 1=a logX�;1=aðtÞ, with X�;1=aðtÞ the largest positive jump
process associated to a L�eevy subordinator with index 1=a < 1.
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From the definition of Y�ðtÞ, its finite-dimensional distributions may be computed from the ones of the Fr�eechet
extremal process. In particular,

PrðY�ðtÞ6 xÞ ¼ e�te�x ð3:41Þ

with PrðY�ð1Þ6 xÞ ¼ e�e
�x
, x 2 ð�1;þ1Þ, a Gumbel distribution [12]. Thus Y�ðtÞ is identified with the Gumbel extremal

process. This process is Markov with local transition kernel Kðx2; x1Þ ¼ ð1� e�ðx2�x1Þ 
 1ðx16 x2Þ, exponential holding
time at x1, with parameter e�x1 . It has the additive structure

Y� ¼d Y�ð1Þ þ
XN�ð1;t�

m¼1
Em ð3:42Þ

with ðE;Em;mP 1Þ a sequence of iid exponentially distributed exponential random variables, independent of the initial

Gumbel variable Y�ð1Þ. Besides, from (3.41) we have

Y�ðtÞ¼d log t þ Y�ð1Þ; t > 0: ð3:43Þ

This process drifts to infinity like the logarithm of clock time.

The Gumbel extremal process is also self-similar, but in the broad sense that is, it satisfies: for any nP 1, c > 0, and

06 t1 < 
 
 
 < tn,

ðY�ðct1Þ; . . . ; Y�ðctnÞÞ¼d ðY�ðt1Þ þ log c; . . . ; Y�ðtnÞ þ log cÞ; ð3:44Þ

which may be checked from (3.41). This self-similarity is translational (or broad sense) and not of the scaling type.

4. L�eevy and Fr�eechet Geometric stable processes

In this section, we introduce a related class of self-similar processes, namely the class of Geometric L�eevy-stable and
Geometric Fr�eechet max-stable processes. They can be obtained while ‘‘subordinating’’ the previous L�eevy- and Fr�eechet-
stable processes in suitable random Exponential time (see [5,31,37,38] for motivations on subordination in Economy

and Finance and also [14] for some related use in Physics).

4.1. A random Exponential model of time

Define an Exponential process, say fEðtÞ; tP 0g as a particular inverse Fr�eechet process, setting a ¼ 1 in (3.18). From

(3.29),

Ee�kEðtÞ ¼ 1=ð1þ ktÞ:

This process has independent unstationary increments with space-time L�eevymeasure for jumps dKðtÞ � dptðxÞ, in the
sense that

Ee�kEðtÞ ¼ exp�
Z t

0

Z þ1

0

ð1� e�kxÞ dKðsÞ � dpsðxÞ: ð4:1Þ

The intensity Kðt; t þ sÞ :¼
R tþs
t dKðsÞ, for t > 0, s > 0, is now identified to be

Kðt; t þ sÞ ¼ � log ðt þ sÞ�1

t�1
¼ log

t þ s
t

: ð4:2Þ

The conditional jump distribution is exponentially distributed with time-dependent mean value t

dptðxÞ ¼ t�1e�xt�1dx: ð4:3Þ

In this model, the expected number of jumps in the interval ð1; 1þ s� is Kð1; 1þ sÞ ¼ logð1þ sÞ � log s for large s:
the moves of fEðtÞ; tP 0g get sparser and sparser as time goes by; however, the larger clock time is, the larger the
amplitude of the moves is.

Globally, with E an exponential variable, fEðtÞ; tP 0g is such that

EðtÞ¼d t 
 E; t > 0; ð4:4Þ
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as a result of

PrðEðtÞ > xÞ ¼ e�xt�1 ; x; t > 0: ð4:5Þ

Globally, this process therefore closely looks like clock time itself. Besides, this Exponential process EðtÞ is also self-
similar (with scaling parameter a ¼ 1) in the sense that, for any nP 1, c > 0, and 06 t1 < 
 
 
 < tn, we have

ðEðct1Þ; . . . ;EðctnÞÞ¼d ðcEðt1Þ; . . . ; cEðtnÞÞ: ð4:6Þ

From all these properties, it turns out that the Exponential process is a good model of time as a random pro-

cess.

4.2. Self-similar processes in random exponential time: subordination

4.2.1. The Geometric L�eevy-stable process
Let fX ðtÞ; tP 0g be, as in (3.1), a L�eevy-stable process with exponent a 2 ð0; 1Þ. Assume it is independent of the

Exponential process just defined fEðtÞ; t > 0g.
Consider next the ‘‘subordinated’’ process fGðtÞ :¼ X ðEðtÞÞ; t > 0g. This process has independent unstationary in-

crements. Besides, as it can easily be checked

Ee�kGðtÞ ¼ 1

1þ atka : ð4:7Þ

As a composition of two self-similar processes, this process is itself self-similar. Its scaling exponent is 1=a, in the
sense that, for any c > 0

ðGðct1Þ; . . . ;GðctnÞÞ¼d c1=aGðt1Þ; . . . ; c1=aGðtnÞ
� 	

: ð4:8Þ

The process fGðtÞ; tP 0g is known as the geometric L�eevy-stable process. The random variable with LST: 1=ð1þ akaÞ
is known in the literature as a geometric stable random variable (see for example [18,19] and the references therein).

Additional insight into the process GðtÞ now arises from the following findings.

With xP 0, a 2 ð0; 1Þ, following [8], let

/aðxÞ :¼
X
nP 0

1

Cð1þ naÞ ð�xÞn ð4:9Þ

be the (entire) Mittag–Leffler function (which reduces to the exponential function if a " 1).
Define a positive Mittag–Leffler random variable, say M, through

PrðM > xÞ ¼ /aðxaÞ; ð4:10Þ

which is consistent with the fact that the Mittag–Leffler function is decreasing.

The Laplace transform Ee�kM of such Mittag–Leffler variables is given by the formula [8,35]

Ee�kM ¼ 1

1þ ka : ð4:11Þ

From (4.7) we readily get

GðtÞ¼d ðatÞ1=aM ; tP 0; ð4:12Þ

so that fGðtÞ; tP 0g is a Mittag–Leffler process as well.
It may now be checked, upon integrating by parts, that the Laplace–Stieltjes transform of the function /aðxaÞ is

given byZ þ1

0

e�kx/aðxaÞ dx ¼ 1

kð1þ k�aÞ : ð4:13Þ

As a corollary of this identity, we get, as an extension of (2.24):Z þ1

0

ð1� e�kxÞ a
x
/aðxaÞ dx ¼ logð1þ kaÞ: ð4:14Þ

T. Huillet, M. Ben Alaya / Chaos, Solitons and Fractals 14 (2002) 725–744 737



Now, from (4.7) and after some scaling transform

Ee�kGðtÞ ¼ exp� logð1þ atkaÞ ¼ exp�
Z þ1

0

�ð1� e�kxÞ a
x
/a

xa

at

� �
dx: ð4:15Þ

This expression allows us to identify the space-time L�eevy measure for jumps dKðtÞ � dptðxÞ of the process GðtÞ, for
which the L�eevy–Khintchine representation holds

Ee�kGðtÞ ¼ 1

1þ atka ¼ exp�
Z t

0

Z þ1

0

ð1� e�kxÞ dKðsÞ � dpsðxÞ: ð4:16Þ

We find, after some easy computations

KðtÞ ¼ log t: ð4:17Þ

As t # 0, the expected number of jumps KðtÞ in the interval ð0; t� also tends to infinity: as for the inverse Fr�eechet
process, the expected number of jumps tends to infinity in the vicinity of t ¼ 0.

The conditional jumps’ height has the time-dependent Mittag–Leffler distributionZ 1

x
dptðzÞ ¼ /a

xa

at

� �
: ð4:18Þ

From the behavior /aðxaÞ � x�a for large x, we get that for large times, the median value of the jumps’ height now

grows like t1=a (note that the mean itself does not take finite values).

4.2.2. The Geometric Fr�eechet process
Let now fX�ðtÞ; t > 0g be a Fr�eechet-stable process with exponent a > 0, independent of fEðtÞ; t > 0g.
Consider next the subordinated process fG�ðtÞ :¼ X�ðEðtÞÞ; t > 0g. Clearly, this process isMarkovian with transition

kernel and rate easily obtainable. We note in particular that

PrðG�ðtÞ6 xÞ ¼
Z 1

0

e�sx�a 1

t
e�st�1 ds ¼ 1

1þ tx�a
ð4:19Þ

so that

G�ðtÞ¼d t1=aG�ð1Þ ð4:20Þ

with G�ð1Þ a random variable such that PrðG�ð1Þ6 xÞ ¼ ð1þ x�aÞ�1.
As a composition of self-similar processes, G�ðtÞ is also self-similar with exponent 1=a, in the sense that

ðG�ðct1Þ; . . . ;G�ðctnÞÞ¼d c1=aG�ðt1Þ; . . . ; c1=aG�ðtnÞ
� 	

: ð4:21Þ

The process fG�ðtÞ; tP 0g is known as the geometric-Fr�eechet-stable process, as the random variable with probability
distribution function 1=ð1þ x�aÞ is known in the literature as a geometric (max-) stable random variable (see for ex-

ample [32,36] and the references therein).

4.2.3. The Geometric Gumbel (or logistic) process

Consider finally the output process

L�ðtÞ ¼ a logG�ðtÞ: ð4:22Þ

Its finite-dimensional distributions may be computed from the ones of the geometric Fr�eechet process: In particular,
from (4.19) and (4.22)

PrðL�ðtÞ6 xÞ ¼ 1

1þ te�x
: ð4:23Þ

We note that PrðL�ð1Þ6 xÞ ¼ ð1þ e�xÞ�1, x 2 ð�1;þ1Þ. This probability distribution function is the one of a
logistic distribution. Thus L�ðtÞ is identified with the logistic extremal process. Just like Gumbel processes, it is a self-
similar process of the translational type in the sense that, for any c > 0,

ðY�ðct1Þ; . . . ; Y�ðctnÞÞ¼d ðY�ðt1Þ þ log c; . . . ; Y�ðtnÞ þ log cÞ: ð4:24Þ
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Remark 2. Exploiting the connection (3.35) between extremal processes and their inverses, defining as usual

the inverse extremal geometric process ði.e., the inverse process of G�ðtÞÞ to be P ðtÞ :¼ infðs > 0 : G�ðsÞ > tÞ, we
get

PrðP ðtÞ > xÞ ¼ 1

1þ xt�a
: ð4:25Þ

This process has unstationary independent increments and

PðtÞ¼d taP ð4:26Þ

with P a generalized Pareto random variable (with exponent one), i.e., with probability distribution

PrðP > xÞ ¼ ð1þ xÞ�1.

Remark 3 (Related stationary processes). So far, we have been chiefly concerned with self-similar motions, either
Fr�eechet or L�eevy. It is interesting to consider such motions in the linear force (Langevin) context. We shall formulate this
problem using the so-called Lamperti transform, inspired from group theory. This approach emphasizes the fact that

self-similarity and stationarity are closely related: an exponential time-transform translates scale-invariance into shift-

invariance of the stationary process.

As is well-known from [21], if the process ZH ðtÞ, tP 0, is self-similar with exponent H > 0, the process

UH ðtÞ :¼ e�tH 
 ZH ðetÞ ð4:27Þ

is stationary with the distribution of ZH ð1Þ as invariant probability distribution under shift in time.
The L�eevy, Fr�eechet, inverse Fr�eechet together with their geometrical extensions are all self-similar with scaling ex-

ponent H either a or 1=a. Performing the Lamperti transform, we are left with a bunch of stationary processes with
invariant probability of the L�eevy, Fr�eechet, exponential or geometric stable distributions.

5. Fr�eechet and L�eevy semi-stable processes

We shall now extend the above constructions which rest upon a weaker notion of stability, which is ‘‘semi-stability’’.

A construction of semi-stable Fr�eechet and L�eevy processes is then supplied.

5.1. Fr�eechet and inverse Fr�eechet semi-stable processes

Let c; e > 0. Let m be a bounded periodic function with period � log c on the real line. Suppose in addition that
function m is such that z� mðzÞ is non-decreasing.
Consider now a random variable ve with probability distribution

Prðve > xÞ ¼ 1

me
x�a exp amðlog xÞ; xP e ¼ x0: ð5:1Þ

Note that the required conditions on m are consistent with the fact this expression is indeed a probability distribution
(see the remark below for additional justifications). In this model for jumps’ height, a plot of � log Prðve > xÞ against
log x should exhibit periodic oscillations around a linear trend with positive slope a.
In (5.1), me is the normalizing constant. Remark also that function m ¼ 0 satisfies all the required conditions so that

in this ‘‘trivial’’ case we are left with the previous Pareto model (3.5) for ve.

Extending (3.4), define the L�eevy spectral function associated to (5.1) as

pðxÞ ¼ �x�aeamðlog xÞ; x 2 ð0;þ1Þ: ð5:2Þ

It may be checked that such pðxÞ are those which satisfy the scaling condition

r�npðxÞ ¼ pðrn=axÞ for all n 2 Z ð5:3Þ

with r :¼ c�a:
With N eðtÞ a Poisson process with intensity met, define now a new jump process as in (3.9) by

DeðtÞ ¼ e 
 1ðN eðtÞ ¼ 0Þ þ ½ve
N eðtÞ� 
 1ðN eðtÞ > 0Þ; tP 0: ð5:4Þ
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Proceeding as before, with fX e
� ; tP 0g the associated extremal process, we get

fX e
� ðtÞ; tP 0g!d

e#0
fX�ðtÞ; tP 0g:

With fZeðtÞ; tP 0g the inverse extremal process, we also get

fZeðtÞ; tP 0g!d
e#0

fZðtÞ; tP 0g:

The limiting processes fX�ðtÞ; tP 0g and fZðtÞ; tP 0g are defined by their finite-dimensional distributions.
More precisely, for any nP 1, and 06 x1 < 
 
 
 < xn, 06 t1 < 
 
 
 < tn, these are now given by

PrðX�ðt1Þ6 x1; . . . ;X�ðtnÞ6 xnÞ ¼
Yn
k¼1
e�ðtk�tk�1Þx�a

k exp amðlog xk Þ ð5:5Þ

and

PrðZðt1Þ > x1; . . . ; ZðtnÞ > xnÞ ¼
Yn
k¼1
e�ðxk�xk�1Þt�a

k exp amðlog tkÞ: ð5:6Þ

The extremal process is also a Markov process whose transition kernel and holding time distribution may easily be

derived, whereas the inverse process has unstationary independent increments with L�eevy characteristic which are also
easily derivable.

We note in particular that

PrðX�ðtÞ6 xÞ ¼ PrðX�ð1Þ6 xÞt ð5:7Þ

with now

PrðX�ð1Þ6 xÞ ¼ e�x�a exp amðlog xÞ; x > 0: ð5:8Þ

The extremal process X�ðtÞ is semi-self-similar in the sense that, with r :¼ c�a, for any ck :¼ rk > 0, k 2 Z and any

06 t1 < 
 
 
 < tn, we have

ðX�ðckt1Þ; . . . ;X�ðcktnÞÞ¼
d ðc1=ak X�ðt1Þ; . . . ; c1=ak X�ðtnÞÞ; ð5:9Þ

which may be checked from (5.5), exploiting the periodicity of function m. The semi-stability (scaling) exponent is 1=a,
with a > 0.

In a self-similar process with scaling exponent H, every change of time scale c > 0 corresponds to a change of space

scale cH : this is a ‘‘scale-invariance’’ property of the finite-dimensional distributions of the process. In a semi-stable
process all change of time scale are not allowed; rather these are necessarily of the particular form ck :¼ rk > 0, as

k 2 Z, for some r > 0.

Similarly, the inverse extremal process fZðtÞ; tP 0g is found to be semi-self-similar with scaling exponent a.

Remark 4. Let r P 1 and c 2 ð0; 1� (or r 2 ð0; 1� and cP 1). Consider the class of positive random variable, say X,
whose probability distribution function, say F ðxÞ, satisfies the functional equation

F ðxÞ ¼ F ðx=cÞr; xP 0: ð5:10Þ

These variables can be identified with the so-called max-semi-stable variables [10,11,15]. The class of solutions of

(5.10) is then easily found to be

F ðxÞ ¼ exp�x�aeamðlog xÞ; ð5:11Þ

where a > 0 is defined through

rca ¼ 1 ð5:12Þ

and where mðzÞ is a bounded periodic (with period � log c) function on the real line. As F must be the probability
distribution function of some random variable the additional condition that z� mðzÞ is a non-decreasing function has to
be imposed, in such a way that the hazard function x�aeamðlog xÞ be non-increasing with x. Note that Fr�eechet variables are
recovered letting r # 1 and c " 1 under the constraint (5.12).
From (5.7) and (5.8), in a semi-stable extremal process fX�ðtÞ; tP 0g, the distribution of X�ð1Þ is the one of a max-

semi-stable variable.
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5.2. L�eevy semi-stable process

Fix a 2 ð0; 1Þ. Next consider the limiting sum process, obtained as the limit

fX eðtÞ; tP 0g!d
e#0

fX ðtÞ; tP 0g

with

X eðtÞ :¼ 0 
 1ðN eðtÞ ¼ 0Þ þ
XN eðtÞ

m¼1
ve
m

" #

 1ðN eðtÞ > 0Þ; tP 0; ð5:13Þ

the associated compound Poisson process. From the Poissonian structure, we get

Ee�kveðtÞ ¼ e�metð1�E e�kve Þ: ð5:14Þ

Now, with the L�eevy spectral function

pðxÞ :¼ �x�a exp amðlog xÞ ð5:15Þ

we get

með1� Ee�kveÞ ¼
Z þ1

e
ð1� e�kxÞ dpðxÞ!

e#0
kae�afðlog kÞ ð5:16Þ

for some periodic function fðqÞ, q :¼ log k, with period log c on the real line, characterized in the remark below. We
therefore get the following definition:

A L�eevy semi-stable process is the process fX ðtÞ; tP 0g with sii such that

Ee�kX ðtÞ ¼ exp�tkae�afðlog kÞ; tP 0: ð5:17Þ

From (5.16), the function fðqÞ is completely determined from the Fourier series expansion of function mðzÞ
[16].

We thus found that fX ðtÞ; tP 0g is a process with stationary independent increments such that

Ee�kX ðtÞ ¼ e�tkae�afðlog kÞ ¼ ½Ee�kX ð1Þ�t: ð5:18Þ

From this expression, the limiting sum process X ðtÞ is semi-self-similar in the sense that for any ck :¼ rk > 0, k 2 Z,

and any 06 t1 < 
 
 
 < tn, we have

ðX ðckt1Þ; . . . ;X ðcktnÞÞ¼
d ðc1=ak X ðt1Þ; . . . ; c1=ak X ðtnÞÞ; ð5:19Þ

which may be checked from (5.19), now exploiting the periodicity of function f. The semi-self-similarity (scaling) ex-
ponent is 1=a, with a 2 ð0; 1Þ.

Remark 5. Let r P 1 and c 2 ð0; 1� or r 2 ð0; 1� and cP 1. Consider the class of positive random variable whose LST,

say uðkÞ, satisfies the functional equation
uðkÞ ¼ uðckÞr; kP 0: ð5:20Þ

These variables can be identified with the so-called positive semi-stable variables [16,20,22,24,28]. The class of so-

lutions of (5.20) is then easily found to be, formally,

uðkÞ ¼ exp�kaeafðlog kÞ; ð5:21Þ

where a > 0 is defined through

rca ¼ 1 ð5:22Þ

and where fðqÞ, q :¼ log k; k > 0, is a periodic (with period log c) function on the real line. From (5.18) and

(5.21), in a semi-stable sum process fX ðtÞ; tP 0g, the distribution of X ð1Þ is the one of a semi-stable variable.
Note that in (5.21), the parameter necessarily lies in the interval ð0; 1Þ if uðkÞ is to be LST of some probability

distribution.
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6. L�eevy and Fr�eechet Geometric semi-stable processes

In this section, we introduce a related class of semi-stable processes, namely the class of Geometric L�eevy and
Geometric Fr�eechet semi-stable processes.

6.1. Semistable processes in random Exponential time: subordination

Let fX ðtÞ; tP 0g be a L�eevy semi-stable process with exponent a 2 ð0; 1Þ, independent of the Exponential process
defined fEðtÞ; t > 0g above.
Consider next the ‘‘subordinated’’ process fGðtÞ :¼ X ðEðtÞÞ; t > 0g. This process has independent unstationary in-

crements. Besides, as it can easily be checked

Ee�kGðtÞ ¼ 1

1þ tkaeafðlog kÞ : ð6:1Þ

As a composition of a self-similar process and of a semi-self-similar process, this process is itself semi-self-similar. Its

scaling exponent is 1=a, in the sense that, with ck ¼ rk ; k 2 Z,

ðGðckt1Þ; . . . ;GðcktnÞÞ¼
d ðc1=ak Gðt1Þ; . . . ; c1=ak GðtnÞÞ: ð6:2Þ

The process fGðtÞ; tP 0g is known as the Geometric L�eevy semi-stable process.
Let fX�ðtÞ; t > 0g be a Fr�eechet semi-stable process with exponent a 2 ð0; 1Þ, independent of fEðtÞ; t > 0g.
Consider next the subordinated process fG�ðtÞ :¼ X�ðEðtÞÞ; t > 0g. Clearly, this process is Markovian. We note in

particular that

PrðG�ðtÞ6 xÞ ¼
Z 1

0

e�sx�a 1

t
e�st�1 ds ¼ 1

1þ tx�aeamðlog xÞ : ð6:3Þ

As a result, it is also semi-stable with exponent 1=a, in the sense that

ðG�ðtÞðckt1Þ; . . . ;G�ðcktnÞÞ¼
d ðc1=ak G�ðt1Þ; . . . ; c1=ak G�ðtnÞÞ: ð6:4Þ

The process fG�ðtÞ; tP 0g is known as the Geometric Fr�eechet semi-stable process.
Consider finally the output process

L�ðtÞ ¼ a logG�ðtÞ: ð6:5Þ

Its finite-dimensional distributions may be computed from the ones of the geometric Fr�eechet semi-stable process. In
particular, from (6.3) and (6.5)

PrðL�ðtÞ6 xÞ ¼ 1

1þ te�xeamðx=aÞ : ð6:6Þ

We note that PrðL�ð1Þ6 xÞ ¼ ð1þ e�xeamðx=aÞÞ�1, x 2 ð�1;þ1Þ. When m ¼ 0, this cumulative distribution function is

the one of a logistic distribution. Thus L�ðtÞ is identified with the logistic extremal process. It is a semi-self-similar
process of the translational type in the sense that, for any ck :¼ rk > 0, k 2 Z,

ðY�ðckt1Þ; . . . ; Y�ðcktnÞÞ¼
d ðY�ðt1Þ þ log ck ; . . . ; Y�ðtnÞ þ log ckÞ: ð6:7Þ

Remark 6. Let rP 1 and c 2 ð0; 1�. Let NðrÞ be a geometric discrete random variable on the positive integers

f1; . . . ; n; . . .g with mean value r. Let /rðuÞ :¼ EuNðrÞ be the probability generating function of NðrÞ. Under our
geometric hypothesis, it is

/rðuÞ ¼
1

1þ rðu�1 � 1Þ ; u 2 ½0; 1�:

Consider now the class of positive random variable whose probability distribution function, say F ðxÞ, satisfies the
functional equation

F ðxÞ ¼ /rðF ðx=cÞÞ; xP 0: ð6:8Þ
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This functional equation extends the one in (5.10) in the sense that the intensity parameter r is now allowed to be

random, substituting NðrÞ to r. Note however that ENðrÞ ¼ r.
These variables are to be identified with the so-called geometric max-semi-stable variables. The class of solutions of

(6.8) is then easily found to be

F ðxÞ ¼ 1

1þ x�aeamðlog xÞ ; ð6:9Þ

where a > 0 is defined through rca ¼ 1. From (6.3) and (6.9), in a geometric extremal process fG�ðtÞ; tP 0g, the dis-
tribution of G�ð1Þ is the one of a geometric-max-semi-stable variable. If function m ¼ 0, random variables with cu-

mulative distribution function: F ðxÞ ¼ ð1þ x�aÞ�1 are the geometric-max-stable.
In a similar way, extending (5.20), consider the class of positive random variables whose LST, say uðkÞ, satisfies the

functional equation

uðkÞ ¼ /rðuðckÞÞ; k P 0: ð6:10Þ

These variables can be identified with the so-called positive geometric-semi-stable variables (for sums). The class of

solutions of (6.10) is then easily found to be

uðkÞ ¼ 1

1þ kaeafðlog kÞ ; ð6:11Þ

where a 2 ð0; 1Þ is defined through rca ¼ 1. If the function f is constant: fðqÞ :¼ f, and if a :¼ eaf, random variables with

LST: uðkÞ ¼ ð1þ akaÞ�1 are thus the previous geometric-stable variables.
From (6.1) and (6.11), in a geometric semi-stable sum process fGðtÞ; tP 0g, the distribution of Gð1Þ is the one of a

geometric semi-stable variable.

7. Concluding remarks

The strong connections between L�eevy-stable, Fr�eechet and inverse Fr�eechet has been displayed. The Geometric version
of such processes have been investigated. Some of their properties have been listed which illustrates that self-similarity

may be compatible with different processes’ structures. A larger class of related semi-self-similar processes is also in-

vestigated. All are Markov examples of concrete interest of self-similar and semi-self-similar processes that are not

necessarily with stationary and independent increments nor with independent increments. This illustrates that these

notions are much more general than the ones of L�eevy’s stability and semi-stability.
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