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Abstract. This work emphasizes the special role played by max-semistable and log-max-semistable distri-
butions as relevant statistical models of various observable and “internal” variables in Physics. Some of
their remarkable properties (chiefly self-similarity) are displayed in some detail. One of their characteris-
tic features is a log-periodic variation of the scale parameter which appears in the stable extreme value
distributions.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.20.-y Classical statistical
mechanics – 89.90.+n Other topics of general interest to physicists

1 Introduction

This work emphasizes the special role played by max-
semistable and log-max-semistable distributions as rele-
vant statistical models of various observable and “inter-
nal” variables arising from the Natural Sciences such as,
(say), Hydrology, Geophysics, Finance... The fitting of
such distributions to real-world problems is not addressed
here and is postponed to a future work, rather the chief
objective is to discuss the very particular statistical status
and properties which such distributions seem to entail. On
this basis, we tried to justify why semistabilty should play
a central role in the modeling of random events. This work
is then organized as follows.

In Section 2, we first address the well-known problem
which consists in modelling observed random events out
of the celebrated Fréchet-Weibull-Gumbel trio, which is
known to embody the only possible limiting Fisher-Tippett
distributions for maxima of independent and identically
distributed (iid) random variables. Some of their remark-
able properties are briefly discussed, focusing in particular
on the one of their stability under the operation of “maxi-
mum”. Standard statistical methodology from parametric
estimation theory is available if the data consist of a sam-
ple with distribution any of the three max-stable distri-
butions (the generalised extreme value distribution in the
statistical terminology): statistical inference in this case is
referred to as “fitting of annual maxima” and rests upon
the idea that these variables can be interpreted as maxima
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over disjoint time period after a crude de-clustering of the
full set of data.

In Section 3, we discuss a concept whose statistical in-
sight is indeed deeper than the one of stability, namely the
one of max-semistability, leading to a larger class of max-
infinitely divisible statistical distributions [11–13,26].
These can be defined as the fixed point of some trans-
formation on their probability distribution function (df )
which basically reflects the statistical self-similarity prop-
erties of their solutions; there seems to be much analogy
of this statistical point of view with the ones of discrete
scale invariance and log-periodicity arising from renormal-
ization group theory in the Physics’ literature (see [35]
for a survey, and [3,17–19,32–34,37–40] for applications
of these ideas to real-world problems). More precisely,
max-semistable observable, as random events, are iden-
tified with the ones whose df, say F , satisfies a functional
equation of the form

F (v) = F
(v
c

+ β
)γ

for some c > 0, β ∈ R, γ ≥ 1. Forcing β = 0 in this func-
tional equation yields solutions whose main feature iden-
tifies with the notion of strict max-selfsimilarity. Allowing
β 6= 0 identifies with the notion of max-selfsimilarity in
the broad sense (or max-semistability), allowing for shifts
to explain the observable.

There are three possible solutions to the above func-
tional equation, each with its specific support, extend-
ing (and actually including) the three max-stable dis-
tributions in that their scale parameters are no longer
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constant, but rather allowed to vary in a log-periodic fash-
ion. In our interpretation, a log-periodic scale parameter
is therefore basically the signature of statistical max-self-
similarity. These distributions stand as appealing candi-
dates to model observed random events in the Natural Sci-
ences, precisely because of their max-selfsimilarity. In this
interpretation, the observed “global” random event inter-
prets as the maximum of a Poissonian number of “local”
events , in other words, as a clustering of “micro-events”.
What the functional equation adds to this is that this
global event could as well result from more local events
but with reduced shifted amplitudes. There is some incer-
titude on the way the final global result may be produced
in that the exact scale, intensity and location of the ob-
servable are undetermined.

It turns out that the first two solutions of these max-
semistable distributions may also be viewed like the ex-
ponentials of the third one in such a way that these may
as well be considered as log-max-semistable. To complete
the picture, we exhibit, in Section 4, the six possible types
of log-max-semistable distributions, adding four statistical
distributions to the two already mentioned from this class.
In a similar fashion, using a symmetry trick, it is suggested
that there exists three possible types of min-semistable
distributions and six possible types of log-min-semistable
distributions, each with specific statistical properties.

It is a very common feature in Physics that observ-
able are modeled through the logarithms of other quanti-
ties with much more “appealing” meaning, such as the
“energy” or intensity of some underlying phenomenon.
The distinctive feature of the logarithmic scale for ob-
servable is that it measures the distance between two
intensities through their ratio rather than their differ-
ence; this transformation thus supplies a discrimination
power between two physical signals which is insensitive to
their absolute intensities in that it essentially deals with
their ratio. In our context, this means that max- or min-
semistable variables are to be considered as the observable
of some “hidden” physical phenomenon, which therefore
proves itself log min-(or max )-semistable. Consequently, it
is argued that log min-(or max )-semistable distributions
should stand for most relevant statistical models for the
intensity of random events measured in logarithmic scale.

In Section 5, we finally focus on a particular log min-
semistable model which exhibits some sort of a “Pareto”
critical behavior when the structure parameter crosses the
value one. In this model, the tails of the energy variable
are at least moderately heavy (ranging from moderately
to extremely heavy, through heavy in a Pareto-like sense)
whereas the ones of its logarithm (the associated observ-
able) are at most moderately heavy, emphasizing the fact
that observable generically exhibit tails much thinner than
the ones of the underlying hidden variable. This fact and
the logarithmic scale arguments suggest that when deal-
ing with a sequence of intensities, if one is to understand
an “average” event, one should rather work either with
the maximum term of the sequence or use geometrical
averaging since the standard arithmetic average may be
extremely ill-defined.

2 Max-stable models for random events

We first recall some salient facts concerning the Fréchet-
Weibull-Gumbel models, i.e. with limit laws of classical
extreme value theory. These models are known to con-
stitute the limit distributions for centred and normalised
iid maxima: in this context, they are to maxima what
Lévy-stable laws are to sums. Their maximum domains of
attraction and the centring and normalising constants are
available for example in [6,31]. An introductory treatment
of extreme value theory may be found, among others, in
Lamperti ’s paperback on probability theory [21].

2.1 The Fréchet model of max-stability

Consider the class of positive random variables, defined
through

V + = (S/s)−1/a , a > 0 and s > 0 (1)

where S is an exponentially distributed random variable
with mean unity, i.e. with df

FS (s) = 1− exp (−s) . (2)

The variable V + can be seen as the output of some de-
terministic “machine”, with parameters (s, a), triggered
by some stochastic source of disorder S. Note that in the
language of statistical physics, the source S is the random
variable with maximum entropy under the constraint that
its average value is equal to one.

While s is simply a scaling factor, the “structure” pa-
rameter a defines, roughly speaking, the way in which
the disorder generated by the source S is concentrated
through the transformation (1) over the positive real axis.
For positive v, the probability density function (pdf ) and
df of V + are obtained easily by combining (1) with (2),
yielding the Fréchet distribution:

fV + (v) = asv−(1+a) exp
(
−sv−a

)
, v > 0

FV + (v) = exp
(
−sv−a

)
, v > 0. (3)

Let us now recall [7,31] that a distribution is said to be
regularly varying it there exists some finite strictly positive
constant a (the tail exponent) such that its complemen-
tary probability distribution function (cdf ) satisfies

F (v) ∼
v↑+∞

v−aL(v) (4)

where L is some slowly varying function, i.e. such that for
all strictly positive t:

lim
v↑+∞

L (tv)
L (v)

= 1. (5)

Such distributions have only moments of order strictly less
than a.
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Clearly, for the Fréchet variable V +

FV + (v) = 1− exp
(
−sv−a

)
∼

v↑+∞
sv−a (6)

so that the Fréchet distribution FV + is regularly varying,
with tail exponent a. The variable V + only possesses mo-
ments of order less than a. Note that when a ∈ (0, 1), V +

does not even have a mean value, i.e., with E the symbol
for mathematical expectation, E (V +) = +∞.

Concerning V +, it may be shown [15] that

E
([
V +
]β) = sβ/aΓ (1− β/a) (7)

so that β-moments for V + are finite as soon as β < a.
Here Γ is Euler ’s function. If a > 1, the mean value mV +

of V + is thus

mV + = s1/aΓ (1− 1/a) .

Concerning its median value, defined by FV + (mV +) =
1/2, it is: mV + =

(
1
s log 2

)−1/a. Note also that the mode of

V + is always non-zero and is m∗V + =
(
a+1
as

)−1/a
. Actually,

the class of all Fréchet distributions can be obtained while
allowing a shift of V +. Let x+ ∈ R. Consider the shifted
variable X+ := V + + x+. From (3), the shifted variable
now admits the df

FX+ (x) = exp−s
(
x− x+

)−a , x > x+ (8)

which is the Fréchet “max-stable” model (see Sect. 2.4
for a justification of this terminology) with support
(x+,+∞), unbounded to the right.

2.2 The Weibull model of max-stability

Next consider the negative inverse random variable V − :=
−1/V +. It has pdf and df given by

fV − (v) = as (−v)a−1 exp (−s (−v)a) , v < 0

FV − (v) = exp (−s (−v)a) , v < 0 (9)

and is identified with the Weibull distribution.
The Weibull random variable V − is special case of the

so-called Von Mises variables [6], whose df can be written
in the form

FV − (v) = FV − (v0) exp
[
−
∫ v0

v

hV − (v) dv
]

, v < v0 < 0

(10)

and where the (positive) hazard energy density hV − de-
fined by this formula verifies

lim
v↓−∞

−vhV − (v) = +∞. (11)

The df of a Von Mises variable decreases towards zero
faster than any power-law, so that these distributions are
light-tailed at −∞ (or rapidly varying). As a consequence,

the variable −V − has moments of any arbitrary positive
order. If in addition the function hV − verifies

lim
v↓−∞

hV − (v) = 0 (12)

the variable V − is said to have moderately heavy left tail.
Otherwise, it is super-exponential, as it has tail lighter
than exponential ones.

In the Weibull example, we get, as v gets close to −∞

hV − (v) ∼ as (−v)a−1
. (13)

Thus, when 0 < a < 1 the Weibull variable V − has mod-
erately heavy left tail, whereas for a ≥ 1 it has super-
exponential thin left tail. From (7), we clearly get

E
([
−V −

]β) = s−β/aΓ (1 + β/a) . (14)

Hence, β-moments for −V − exist as soon as β > − a; in
particular the mean value of V − is

mV − = −m−V − = −s−1/aΓ (1 + 1/a) . (15)

Note that whereas the mean value of V − is given by (15),
its median value, say mV − , defined as the solution of
FV − (mV −) = 1/2, is

mV − = −m−V − = −
(

1
s

log 2
)1/a

= −1/mV + . (16)

Finally, the distribution of V − has a non-zero mode, say
m∗V − , at the only condition that a > 1, and if this is the
case

m∗V − = −m∗−V− = −
(
a− 1
as

)1/a

. (17)

Actually, the class of all Weibull distributions can be ob-
tained while allowing a shift of V −. Let then x− ∈ R.
Consider the shifted variable X− := V − + x−. From (9),
the shifted variable now admits the df

FX− (x) = exp−s
(
x− − x

)a , x < x− (18)

which is the Weibull max-stable model (see Sect. 2.4 for a
justification of this terminology) with support (−∞, x−),
unbounded to the left.

2.3 The Gumbel model: max-stability for real-valued
random variables

Let us introduce the variable

X = logV + (19)

i.e. the logarithm of the Fréchet variable V +.
Let us then compute the distribution of X and under-

line some of its remarkable properties.
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From (6, 19) the df for the variable X is found to be

FX (x) = exp
(
−se−ax

)
. (20)

We identify this df with the one of a Gumbel distri-
bution [9,14]: the “exp-Fréchet” variable X is a Gumbel
variable on the extended domain (−∞,+∞).

For any choice of (s, a) , the variable X is Von Mises’;
in addition, it is super-exponential, which means that the
tails of its df decrease towards zero at exponential rate or
faster at both extremities ±∞ of the support. Hence, the
distribution is “thin”, although very asymmetric (expo-
nential at x = +∞ and doubly exponential at x = −∞):
taking the logarithm of V + thins its tails in a drastic way.
From (7), the Laplace transform ZX (β) of X is given by

ZX (β) := E
(
eβX

)
= E

([
V +
]β) = sβ/aΓ (1− β/a) .

(21)

This function is thus defined on the range β < a, there-
fore containing the origin β = 0, as required. As a re-
sult, in sharp contrast to the Fréchet distributed variable
V + itself, the variable X always has convergent moments
of arbitrary integral order, which can be obtained as the
Taylor coefficients of ZX (β) at β = 0. For instance, de-
noting as γ the Euler ’s constant, the mean value of X is
found to be

mX = E (X) =
1
a

(log s+ γ) ' 1
a

(log s+ 0.5772) . (22)

In addition, the median value of X is

mX =
1
a

(log s− log log 2) ' 1
a

(log s+ 0.3665) . (23)

It should be emphasized that the mean and median have
a simple expression in terms of the pair (s, a). In addition,
(see e.g. [8] for an exploitation of this fact) the distribu-
tion X is always unimodal, and even strongly unimodal,
which means that the information (log-density) function
IX (x) := − log fX (x) is strictly convex; its mode is

m∗X =
1
a

log s. (24)

A remarkable feature of the mean-median-mode trio in the
Gumbel model is thus that

mX > mX > m∗X . (25)

2.4 Max-stable models as limit laws in Statistics

Fréchet, Weibull and Gumbel distributions are all max-
stable in the following sense. Let X be any of these vari-
ables with df either given by (8, 18, 20). Then, for any
n ≥ 1, there exists two sequences xn ∈ R, σn > 0 such
that, with Xm

d= X , m = 1, ..., n, iid random variables

X
d= max
m=1,...,n

Xm − xn
σn

·

Here the symbol d= means that the random variables share
the same distributions. This class is a proper subclass of
the one of max-infinitely divisible (MID) variables X for
which, for any n ≥ 1, with Xm,n d= Xn, m = 1...;n

X
d= max
m=1,...,n

Xm,n.

A characteristic criterion for MID random variables X
is thus that for any n ≥ 1, FX (x)1/n must be a df (the
one of Xn); alternatively, for any t > 0, FX (x)t must be a
df. It turns out that all unidimensional distributions may
be shown to be MID so that this notion is fully meaningful
in higher dimensions only [5].

Turning back to max-stable variables, a consequence
of their properties is that they appear as limit laws in the
statistics of extremes problem in the following sense: if X
is max-stable, then there exists a random variable X and
two sequences xn ∈ R, σn > 0 such that

max
m=1,...,n

Xm − xn
σn

d→ X as n ↑ +∞

where Xm d= X , m ≥ 1 is an iid sequence. The variable
X is said to belong to the max domain of partial attrac-
tion (MDPA) of X (note that X itself belongs to its own
MDPA). Thus, max-stable distributions derive their im-
portance from the fact that they are the limit laws of the
maximum of iid random variables Xm, m ≥ 1, after a
convenient location-scale transform [6,9,10,14]. Thus, for
maxima, the max-stable laws play the role which Lévy-
stable probability distributions play for sums in the central
limit theorem.

3 The max-semistable models
and max-selfsimilarity

We now discuss a concept whose generality is larger
than the one of stability, namely the one of max-
semistability [11–13,26,27]. Max-semistable laws are iden-
tified with the ones whose df satisfies a functional equa-
tion of the form

F (v) = F
(v
c

+ β
)γ

(26)

for some c > 0, β ∈ R, γ ≥ 1. They constitute the “max
version” of the notion of semistability for sums first intro-
duced by Lévy in 1937 (see [23] p. 45 for a survey on this
point) and worked out in [22].

3.1 Max-semistability of type one

Let γ > 1 and c ∈ (0, 1). First, consider the class of pos-
itive random variable V + whose df satisfies the simpler
functional equation

FV + (v) = FV + (v/c)γ . (27)
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These variables will be identified with the so-called max-
semistable variables and may thus be seen as the fixed
point of some transformation to be elucidated below as
statistical self-similarity, in the strict sense.

Upon reasoning with the function H (x) :=
− logFV + (ex), this functional equation takes the simpler
form H (x) = γH (x− log c); letting H (x) := e−axP (x),
the class of solutions of (27) are then easily found to be,
formally

FV + (v) = exp−v−aP (log v) (28)

where a > 0 is uniquely defined through

γca = 1 (29)

and where P (x) is a periodic (with period − log c)
function on the real line, that is satisfying P (x) =
P (x− log c).

As FV + must be the df of some random variable V +,
additional conditions have to be imposed on P . First P
has to be non-negative: we shall then let P (x) := eaνc(x),
for some periodic function νc. Next, x − νc (x) has to be
a non-decreasing function, in such a way that the hazard
function v−aeaνc(log v) be non-increasing with v. Finally, it
is necessary that νc (x) be right-continuous and bounded.
Conversely, if function P satisfies all these conditions, then
the function FV + defined by (28) is a df and satisfies the
functional equation (27).

Note also that the functional equation (27) is also

FV + (v) = FV + (v/c)γ (30)

with c := 1/c > 1 and γ := 1/γ ∈ (0, 1) so that νc = νc is
an additional requirement that νc should meet, observing
that a = log γ/− log c = a.

A most simple and fundamental example of such νc is,
with ρ ∈ (0, 1]

νc (x) =
ρ log c

2π
sin

2πx
− log c

(31)

assuming a single term in the full Fourier series expansion
of νc (x).

To summarize, a max-semistable model for V + > 0 is

FV + (v) = exp−sV + (v) v−a (32)

where the log-scale parameter is allowed to vary periodi-
cally with log v according to

log sV + (v) = aνc (log v) . (33)

In a max-semistable model the scale parameter is thus
log-periodic. Note that in the example (31), sV + (v) ∈[
γ−ρ/(2π), γρ/(2π)

]
, so that the value 1 lies in the interval.

Let us stress some additional properties of max-
semistable positive variables

– We start with a notion of statistical max-selfsimilarity.
Let X := X (1) be a positive random variable with
df FX . With ς > 0, define the variable X (ς) as the

variable whose df is FX(ς) = F ςX , raising FX to the
power ς (in our univariate context, F ςX is always the
df of some random variable; this property is the one
of max-infinite divisibility of X). The variable X will
be said statistically max-selfsimilar, with exponent H,
if the following holds for some ς > 0

X (ς) d= ςHX (1) . (34)

Now, the functional equation (27) means that

V + (γ) d= c−1V +. (35)

With a > 0 defined through (29), this is also

V + (γ) d= γ1/aV +. (36)

Thus the class of all such V + identifies with the class
of statistically max-selfsimilar positive random vari-
ables, with exponent H = 1/a > 0. By its construc-
tion, a positive max-semistable variable is in the max-
infinitely divisible class.

– The physical reason why one should be interested in
such self-similar variables proceeds as follows: as V +

is a max-infinitely divisible variable, this basically
means that, “roughly” speaking (this reasoning can
be made rigorous)

V + = max
m=1...P (1)

εm (37)

where P (1) is a Poisson variable with mean value 1.
Here (εm)m≥1 is an iid sequence of “local” events. The
observed “global” random event V + is thus assumed
to be the maximum of a Poissonian number of “lo-
cal” events which sounds reasonable, physically: the
observed variable is a clustering of “micro-events”.
What the functional equation (27) tells us, in addition,
is that this global event V + could as well result from
more local events (replacing P (1) by P (γ), γ > 1,
in (37)) but with smaller reduced amplitudes, (substi-
tuting cεm to εm, m ≥ 1 , in (37)), in such a way that
V + is also, for some judicious constants c and γ

V + = max
m=1...P (γ)

c εm.

It is some sort of an ignorance principle on the way
the final global result may be produced: the exact scale
and intensity of the observable are undetermined. As
a result, there are now two basic unknown structure
parameters, namely c and γ (or alternatively c and
a = log γ/− log c) to deal with.
This illustrates the commonly accepted fact that phys-
ical variables of interest are “invariants” in some sta-
tistical sense which is made precise here.
We finally underline the analogy of the problem
treated in this monograph on a statistical basis and
the one of Sornette and coworkers on discrete scale
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invariance arising from Renormalization Group the-
ory in Physics (see [35] and the references therein
for a survey). There, the exponent a is naturally
interpreted as a “dimension” and the log-periodic
decorations lead to the richer notion of a complex
dimension, whereas, in the statistical language ad-
vocated here, a simply is a tail exponent and the
log-periodic decorations states that the underlying
stable variable possibly exhibits an oscillating scale
parameter. In any case, there is empirical evidence
of log-periodicity in diverse application fields among
which: finance [17–19,40], turbulence [39], rupture
theory [3], DLA growth [38], geophysics [33,34,37]
and frustated systems’ statistics [32].

– Note that a constant function νc (x) = ν of (28) sat-
isfies all the requirements, so that a max-stable model
is a particular case of a max-semistable model. Max-
semistability identifies here with the notion of max-
selfsimilarity, which is weaker than max-stability, lead-
ing to a larger class of distributions.

– From FV + (v) ∼ v−aeaνc(log v). Thus V + is “close” to
be regularly-varying with tail index a > 0, just like the
Fréchet model was. In fact, although L (v) := eaνc(log v)

is not slowly varying, it satisfies the weaker condition
that, for all t > 0, L (tv) /L (v) has a liminf and a
limsup for large v.

– Empirical evidence of max-semistability goes through
the observation that

− log
(
− logFn,V + (v)

)
= a (log v − νc (log v)) (38)

i.e. that a plot of − log
(
− logFn,V + (v)

)
against log v

should exhibit oscillations around a linear trend with
positive slope a. Here, Fn,V + is the empirical df that
can be obtained from an n-iid sample of V +. Note
also that the theoretical df of V + is such that, with
k ∈ Z, FV +

(
c−k
)

= exp−scak with log s = aνc (0):
evaluating FV + at geometrically scattered points c−k,
k ∈ Z, the oscillating part vanishes.

Actually, the variable V + does not cover all the class
of max-semistable variables. Those obtained after a shift
of V + are also in this class as we now show.

Let x+ ∈ R. Consider the shifted variable X+ :=
V + +x+. The shifted variable now satisfies the functional
equation of the type (26), with β = x+ (1− 1/c)

FX+ (x) = FX+

((
x− x+

)
/c+ x+

)γ , x > x+ (39)

whose solution is

FX+ (x) = exp−
(
x− x+

)−a eaνc(log(x−x+)), x > x+.
(40)

This accounts for the max-semistable model of type one. In
this formulation, the observed “global” random event X+

still is the maximum of a Poissonian number of “micro-
events”, as in (37). However, from the functional equa-
tion (39), this global event X+ could as well result from

more local events but with reduced and shifted ampli-
tudes, in constants c, γ and β

X+ = max
m=1...P (γ)

c (εm − β) .

The exact way the final global result may be produced
is unknown in that the exact scale, intensity and loca-
tion of the observable are now basically undetermined.
Thus max-semistability extends the notion of strict max-
selfsimilarity discussed above in that the location param-
eter of the observable is also unknown: in this sense, it is
a “broad sense” max-selfsimilarity.

3.2 Max-semistability of type two

We now briefly discuss a second class of max-selfsimilar
random variables.

Letting V − := −1/V + < 0, its df is, from (28)

FV − (v) = FV + (−1/v) = exp−sV − (v) (−v)a (41)

with scale function

sV − (v) := sV + (−1/v) . (42)

This variable is in the Von Mises class, just like Weibull
was. It is again max-semistable and negative in that it now
satisfies the functional equation

FV − (v) = FV − (vc)γ . (43)

Note that this functional equation means that

V − (γ) d= cV −. (44)

With a > 0 defined through (29), this is also

V − (γ) d= γ−1/aV −. (45)

Thus the class of all such V − < 0 identifies with the class
of statistically max-selfsimilar random variables, with ex-
ponent H = −1/a < 0.

Again, this set of variables does not cover all the pos-
sible range. Rather, let x− ∈ R and consider the shifted
variableX− := V −+x−. The shifted variable now satisfies
the functional equation of the type (26)

FX− (x) = FX−
((
x− x−

)
c+ x−

)γ , x < x− (46)

whose solution is

FX− (x) = exp−
(
x− − x

)a
sV −

(
x− x−

)
, x < x−. (47)

This model stands for the max-semistable distribution of
the second type.
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3.3 The max-semistable model of type three:
“extended” Gumbel

Finally, we proceed with the construction of a last class of
max-semistable variables. Let us introduce the variable

X = log V + (48)

i.e. the logarithm of the max-semistable (and max-
selfsimilar) variable V + defined in (28). Let us then com-
pute the distribution of X and underline some of its re-
markable properties.

From (28, 48) the df for the variable X is found to be

FX (x) = exp
(
−sX (x) e−ax

)
(49)

with

log sX (x) = log sV + (ex) = aνc (x) . (50)

We identify this df as the one of an extended Gumbel dis-
tribution [14] as the scale parameter is now allowed to vary
log-periodically: the “exp-max-selfsimilar” variable X is
an extended Gumbel variable on the domain (−∞,+∞).

This variable X is Von Mises’; in addition, it is super-
exponential, which means that the tails of its df decrease
towards zero at exponential rate or faster at both extrem-
ities ±∞ of the support. Hence, the distribution is “thin”,
although very asymmetric (exponential at x = +∞ and
doubly exponential at x = −∞).

With γ > 1 and β := − log c > 0, we note that X is
a real-valued random variable, whose df is the solution to
the functional equation of the type (26)

FX (x) = FX (x+ β)γ , x ∈ R (51)

where

a = log γ/β. (52)

Thus X is itself a max-semistable variable with sup-
port R. From this observation, the max-semistable vari-
ables V + := expX and V − := − exp−X can also be
interpreted as the exponentials of the max-semistable vari-
able X and therefore also belong to the log-max-semistable
models’ class.

Note also that the random variable X = logX+ (sub-
stituting X+ to V + in (48)) satisfies a functional equa-
tion of the above type FX (x) = FX (x+ β)γ , x ∈ R, but
now with β = −ex

+
log c > 0; a similar equation may

be found for − log (−X−). The remarkable point about
(X+, X−) is therefore that they may be interpreted as
max-semistable variables, but also like the exponentials of
a max-semistable Gumbel variable: they are thus simulta-
neously max-semistable and log-max-semistable. This sug-
gests that log-max-semistable variables are also of special
interest in our context; in the sequel, we shall then exhibit
all six possible types of log-max-semistable variables.

Before proceeding, let us supply an additional remark,
underlining the importance of max-semistable models in
Statistics [25].

3.4 Max-semistable models as limit laws in Statistics

Let X be any max-semistable variables with df either
given by (40, 47, 49). These variables also appear as limit
laws in the statistics of extremes problem in the following
wider (geometrical) sense: if X is max-semistable, then, as
it can easily be checked, (see also [11,13]), there exists a
random variable X and three sequences xn ∈ R, σn > 0
and γn > 0 such that

max
m=1,...,γn

Xm − xn
σn

d→ X as n ↑ +∞ (53)

where Xm d= X , m ≥ 1 is an iid sequence. The
integer-valued sequence γn is assumed to satisfy the ad-
ditional geometrical growth properties: lim

n↑+∞
γn = +∞

and lim
n↑+∞

γn+1/γn = γ ≥ 1.

The variable X is said to belong to the max domain of
partial attraction (MDPA) of X (note that again X itself
belongs to its own MDPA).

Thus, max-semistable distributions derive their impor-
tance in Statistics from the fact that they are the limit
laws of the maximum of a geometric number γn of iid ran-
dom variablesXm,m ≥ 1, after a convenient location-scale
transform. Max-semistable variables also form a proper
subclass of MID variables. Max-stable variables are max-
semistable and can be obtained in the limit γ → 1+. This
latter class is therefore an extension of the former one,
hence its name.

Remark 1 Assuming for simplicity γ to be an algebraic
number, integral sequences with the required geometrical
growth properties may be produced (for example) in the
following “canonical” way. Let K > 1 be some integer. Let
(a1, .., aK) be a K−vector of integers such that aK 6= 0
and satisfying

∑K−1
k=1 ak > 0. Define the K×K irreducible

(and even primitive) matrix A as

A :=


a1 1 0 · · · 0
a2 0 1 · · · 0
...

...
...

. . .
...

aK−1 0 0 1
aK 0 0 · · · 0

 ·

With “prime” denoting transposition of vectors, let the
K−column vector N0 be defined as N

′

0 := (1, 0, ..., 0). De-
fine now the integer-valued vectors sequence (Nn, n ≥ 0)
through the recurrence

Nn+1 = ANn, n ≥ 0.

Then, with Nn (k) denoting the kth entry of Nn, γn :=∑K
k=1 Nn (k) exhibits the geometrical growth property

where γ > 1 is the spectral radius of A (which is here the
simple largest eigenvalue of A). This is a “branching” in-
terpretation of the way the sequence (γn, n ≥ 0) could be
produced: indeed, suppose an individual of “type” k = 1
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initially generates ak individuals of type k, k = 1, ...,K.
At subsequent steps n > 1, iterate this process observing
that for k = 2, ...,K, individuals of type k generates a sin-
gle individual of type k−1. The number Nn (k) represents
the number of individuals of type k at resolution n in this
branching process, and γn the total amount of offspring,
whatever their type. If a max-semistable variable is to be
produced in the limit as in (53), data must be aggregated
in geometrical packets which may be understood from a
simple tree-like structure.

4 The log-max-semistable models

It has just been emphasized that (X+, X−) were both
max-semistable and log-max-semistable. In order to ex-
hibit all possible types of log-max-semistable variables, it
is convenient to study the exponentials of (X+, X−) now
viewed as max-semistable variables. This operation adds
four additional types of log-max-semistable variables, to be
added to (X+, X−) which are indeed log-max-semistable
variables themselves.

4.1 Log-max-semistability of type one

We shall thus be interested in the models

X+
1 = expX+ > ex

+
> 0 (54)

and by

X+
2 = − exp−X+ ∈

(
−e−x

+
, 0
)
. (55)

As a result, (54, 55) now define two variates which are
log-max-semistable distributed in the sense that logX+

1

and − log(−X+
2 ) simply are max-semistable distributed.

These models will be shown to present a certain number
of interesting new features.

The df of X+
1 and X+

2 are now obtained easily by
combining (54, 55) with (40), yielding the two log-max-
semistable distributions of type one:

FX+
1

(x) = FX+ (log x) , x > x+
1 := ex

+
(56)

and

FX+
2

(x) = FX+ (− log (−x)) , 0 > x > x+
2 := −e−x

+
.

(57)

Let us here stress the following point. Combining (54) with
(40), we get the tail equivalence

FX+
1

(x) ∼
x↑+∞

log
(
x/x+

1

)a
eaνc(log log(x/x+

1 )). (58)

From this expression, it turns out that the random vari-
able X+

1 has tails heavier than the ones of any power law
in the sense that, for any power-law tail index b > 0

FX+
1

(x)

x−b
→

x↑+∞
+∞.

Such distributions are said to be with tail index zero or
with very heavy tails. As a result, they exhibit no finite
moment of any arbitrary positive order: the exponential of
X+ has tail much fatter than the ones of X+ itself which
are with tail index a > 0.

4.2 Log-max-semistability of type two

We shall next introduce the models

X−1 = expX− ∈
(

0, ex
−
)

(59)

and

X−2 = − exp−X− ∈
(
−∞,−e−x

−
)
. (60)

The df of X−1 and X−2 are now obtained easily by combin-
ing (59, 60) with (47), yielding the two log-max-semistable
distributions of type two:

FX−1
(x) = FX− (log x) ,0 < x < x−1 := ex

−
(61)

and

FX−2
(x) = FX− (− log (−x)) , x < x−2 := −e−x

−
(62)

There are thus six possible types of log-max-
semistable distributions, namely, the ones of
(X+, X−, X+

1 , X
+
2 , X

−
1 , X

−
2 ). Among these, the first

two (X+, X−) play a special role as they are also simply
max-semistable.

Remark 2 The df of the variables (X+
1 , X

+
2 , X

−
1 , X

−
2 ) are

themselves the solutions of a functional equation which
may be derived from the ones (39, 46) that the dfs of
(X+, X−) themselves verify. For example, FX+

1
(x) is the

solution to FX+
1

(x) = FX+
1

(
x+

1 (x/x+
1 )1/c

)γ
.

4.3 Log-max-semistable models as limit laws
under power normalization in Statistics

Let Z be any log-max-semistable variables
(X+, X−, X+

1 , X
+
2 , X

−
1 , X

−
2 ). For each such variable,

Z+ = expX , or Z− = − exp−X , with X max-semistable
for which, following (53), there exists a random variable
X in their MDPA and three sequences xn ∈ R, σn > 0
and a geometrical series γn > 0 such that

max
m=1,...,γn

Xm − xn
σn

d→ X as n ↑ +∞ (63)

where Xm d= X , m ≥ 1 is an iid sequence. As a result,
for any Z log-max-semistable of the form Z+, there exists
a random variable Z := eX > 0 in their MDPA and three
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sequences zn > 0, σn > 0 and γn > 0 such that, with
zn = expxn,

max
m=1,...,γn

(
Zm
zn

)1/σn
d→ Z+ as n ↑ +∞. (64)

In a similar way, for any Z log-max-semistable of the form
Z−, there exists a random variable Z := −e−X < 0 in
their MDPA and three sequences zn < 0, σn > 0 and
γn > 0 such that, with zn = − exp−xn,

65 max
m=1,...,γn

−
(
Zm
zn

)1/σn
d→ Z− as n ↑ +∞. (65)

Thus, log-max-semistable distributions derive their im-
portance from the fact that they are the limit laws of
the maximum of a geometric number γn of iid ran-
dom variables Zm, m ≥ 1, after a convenient power
normalization [13,30].

Remark 3 Similarly, using a symmetry “trick”, the six
variables(
X+ := −X−, X− := −X+, X+,1 := eX+ ,

X+,2 := −e−X+ , X−,1 := eX− , X−,2 := −e−X−
)

(66)

are all log-min-semistable. With x+ = −x−, x− = −x+,
x+,1 = ex+ , x+,2 = −e−x+ , x−,1 = ex− , x−,2 = −e−x−,
their respective support is

(x+,∞) , (−∞, x−) , (x+,1,∞) ,
(x+,2, 0) , (0, x−,1) , (−∞, x−,2)

and their df may easily be deduced from (40, 47, 66).
The (log)-max-semistablevariables were characterized by
functional equations for their dfs; concerning (log)-min-
semistable, they are rather characterized by functional
equations for their cdfs.

To take an example, one may easily check that

FX+ (x) = FX− (−x)

= exp− (x− x+)a sV − (x+ − x) ,

x > x+ = −x− (67)

satisfies the functional equation FX+ (x) =
FX+ ((x− x+) c+ x+)γ , x > x+, involving now the
cdf FX+ .

5 Log-min-semistable model for energy

It is a very common feature in the natural sciences that
observable are modeled through the logarithms of other
quantities with much more “physical” meaning, such as
“energy” [15,16]. The distinctive feature of the logarith-
mic scale is that it measures the distance between two val-
ues through their ratio rather than their difference, which

amounts, when these values are close, to work with their
relative (rather than absolute) variation; this transforma-
tion thus supplies a discrimination power between two
signals which is insensitive to their absolute intensities,
rather dealing with the ratio of these intensities. Thus,
the intensity of noise, as perceived by the human ear,
is usually measured in decibels, i.e. using a logarithmic
scale. Similarly, earthquake magnitudes are determined
from the logarithm of the amplitudes of waves recorded
by seismographs; additional adjustments are included in
the magnitude formula to compensate for the variation
in the distance between the various seismographs and the
epicenter of the earthquake, making data self-consistent.

In our context, this means that max- or min-semistable
variables are to be considered as the observable of some
physical phenomenon, say Z, which proves itself log min-
(or max ) -semistable. Observable are often assumed, in
the applications, to take values bounded from below but
unbounded from above making X+ (as defined in (40))
and X+ (as defined in (67)) of particular interest in this
respect. Similarly, the model for the underlying energy
variable which seems of special interest, for the same rea-
son concerning their support, are X+

1 (as defined in (54))
and X+,1 (as defined in (66)). For the first duo (X+, X+

1 )
of variables, it was observed that the observable X+ was
always of the power-law type with exponent a > 0, in such
a way that the hidden variable X+

1 exhibited very heavy
tails of index zero, for any value of this parameter. This
is not the case for the second duo of variables (X+, X+,1)
for which special attention is needed.

In the sequel, we shall therefore call Y := X+ (the
min-semistable observable) and thus focus on the particu-
lar log-min-semistable “energy” variable Z := X+,1 = eY .
This variable exhibits very interesting “critical” prop-
erties similar to the ones discussed in [16], in the re-
stricted context of log-Weibull distributions which could
account for tails ranging from moderately heavy to “very
heavy” through regularly-varying tails (i.e. of the power-
law type).

First observe that, with y0 := x+ ∈ R, the variable Y
admits the following cdf

FY (y) = exp− (y − y0)a sV − (y0 − y) , y > y0 (68)

which includes log-periodic corrections to the so-called
“stretched exponential model” [15,20,36]. From this ex-
pression, one realizes that Y exhibits at most moderately
heavy right tails and so presents convergent moments
of arbitrary positive order. More precisely, it has super-
exponential tails if and only if a > 1. If a < 1, the tails
are only moderately heavy. The critical case a = 1 corre-
sponds to exponential tails. In any case, Y is in the Von
Mises’ class and

Y = logZ (69)

can be interpreted as the observable of some physical hid-
den “energy” variable Z > z0 > 0. Here z0 := ey0 > 0
is the ground state for energy. Thus, if the observable is
semistable, the hidden variable of physical interest is log-
semistable.
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Next, from the expression (68, 69), the cdf of Z is,
with sZ (z) := sV − (− log z/z0) = sV + (1/ log (z/z0))

FZ (z) = exp− (log z/z0)a sZ (z) , z > z0. (70)

Note from this expression and criterion arising from (12)
that the energy Z is always subexponential whatever the
value of parameter a: its tails are now at least moderately
heavy, again illustrating that the hidden variable exhibits
tails much fatter than the one of the observable. Let us
discuss the tails shape in more details, depending on the
value of the parameter a. We shall distinguish between
three cases:

– Supercritical energy model: a > 1.

Assuming sZ to be derivable, when a > 1, it can easily
be checked that, with the hazard energy density hZ defined
from (10) applied to (70): limz↑+∞ zhZ (z) = +∞. Thus
supercritical model (70) for energy release is Von Mises’.
In addition, hZ (z) tends to zero as z ↑ +∞, so that the
tails of Z in the supercritical range are subexponential and
Von Mises’. If a = 2, this model is strongly reminiscent
of the one of a log-normal distribution whose ubiquity in
Physics and elsewhere is well-known [4,2].

– Critical energy model: a = 1.

When a = 1, the cdf of Z is easily obtained from (70);
it is:

FZ (z) =
(
z

z0

)−sZ(z)

, z > z0. (71)

In some sense, this model may be viewed as a Pareto
model but with the peculiarity that it exhibits a non con-
stant tail index sZ (z), i.e. varying with z.

Remark 4 For a “true” Pareto model, FZ (z) =
(
z
z0

)−s
,

z > z0, with z0 > 0 and s > 0, constant [28,41,1]. Let us
recall some remarkable properties of such models. First, it
may easily be checked that

EZβ =
s

s− β z
β
0 , for β < s. (72)

Note that crossing the value s = 1 in such a model is
critical in the sense that Z has infinite mean value when
s ≤ 1, finite when s > 1. Next, with zc > z0 some cut-off
value, let Z̃c := (Z − zc) 1 (Z > zc) > 0 denote the excess
variable Z − zc given Z > zc. Its cdf F

eZc
(z), may be

computed to be

F
eZc

(z) =
FZ (z + zc)
FZ (z)

=
(

1 +
z

zc

)−s
, z > 0 (73)

independent of the characteristic scale z0: a truncated
Pareto distribution has no intrinsic scale but the one of
the tail observer. As a result, for all s > 0, the conditional
excess median value defined by F

eZc

(
m

eZc

)
= 1/2 is

m
eZc

= zc
(

21/s − 1
)

from which one deduces m
eZc
≤ zc if and only if s ≥ 1:

crossing the critical value s = 1 yields a median excess
value smaller than the cutoff value zc itself.

These properties are lost when allowing the scale pa-
rameter s to vary with z, as sZ (z) oscillates periodically
around the critical value s = 1.

– Subcritical energy model: a < 1.

This is the most interesting feature of this model.
When a < 1, the cpdf of Z satisfies the following property,
as a result of (70): for any strictly positive constant b

FZ (z)
z−b

→
z↑+∞

+∞. (74)

Thus the tails of the distribution of Z are fatter than any
power-law with exponent b > 0: they are very heavy tailed
with tail index zero. As a result, such distributions have no
moment of any arbitrary positive order. Thus model (70)
for energy release in the subcritical regime is very heavy-
tailed, with tail index zero; we shall call such models “very
heavy tailed”: fitting this distribution to a natural phe-
nomenon would mean that there exists in Nature extreme
situations with very heavy tails (and hence very special
properties).

Let us make two remarks on this model, underlining
its importance in our physical context.

Remark 5 As conventional wisdom suggests, the smaller
a is, the heavier the tails for Z are, ranging from mod-
erately heavy tails (a > 1) to very heavy tails (a < 1),
through Pareto-like tails (71) with oscillating local expo-
nent sZ (z) > 0 in the critical situation when a = 1. In
this model, the Pareto-like laws again appear as a critical
phenomenon which suggests that such distributions are
unlikely to be observed in Nature. Besides, the authors
are unaware of any previous mention of such distributions
in the literature.

Remark 6 As was noted in a straightforward way, for any
value of a > 0, the energy variable Z is subexponen-
tial, i.e. presenting at least moderately heavy tails. In all
these situations, the maximum Zn:n := max (Z1, ..., Zn)
of an n-sample (Z1, ..., Zn) is tail equivalent to the sum∑n
m=1 Zm, [6], in the sense that

P (Zn:n > x)
P (
∑n
m=1 Zm > x)

→
x↑∞

1. (75)

The tail of the maximum determines the tail of the sum.
If a < 1, hence with distributions with tail index zero,

two stronger convergence results actually hold. They are

Zn:n∑n
m=1 Zm

→ 1 (in probability) (76)

and even almost surely if and only if: a < 1/2 [29,24].
In this case, a single event explains (in probability or

even almost surely) a cumulative event. The understand-
ing of a cumulative energy goes through the one of its
largest term.
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5.1 Large deviation from the mean

From the law of large numbers, the empirical mean 1
nSn :=

1
n

∑n
m=1 Ym converges almost surely to the theoretical

mean, say mY := EY of Y , known to exist as Y exhibits
at most moderately heavy tails. Large deviation theory is
concerned with the evaluation of the (small) probability

P

(
1
n
Sn > y

)
(77)

as y exceeds the mean mY . More precisely, it is concerned
with the rate at which this probability tends to zero, as
a function of the sample size n. We shall distinguish two
cases from the tail behavior of Y .

– a ≥ 1. In this case the Laplace transform of FY (y),
say

ZY (β) :=
∫ ∞
y0

e−βydFY (y) (78)

(with real β) is defined in a open neighborhood of β =
0. As a result, it is well-known that, with y > mY

n−1 logP
(

1
n
Sn > y

)
→
n↑∞

f (y) < 0. (79)

Here f (y) the concave Cramér-Chernoff transform of
the “free energy” − logZY (β). The probability that
the empirical observed mean deviates from the mean
tends to zero exponentially fast as n grows, at rate
f (y).

– a < 1. The function ZY (β) is no longer defined in
an open neighborhood of β = 0, so that the previ-
ous result does not hold in this (subexponential) case.
However, from the tail equivalence of the maximum
and sum for subexponential distributions, one gets for
large n

P

(
1
n
Sn > y

)
∼ P

(
1
n
Yn:n > y

)
= 1− (FY (ny))n .

From (68), with y > mY

1− (FY (ny))n ∼ n exp−sV − (y0 − ny) (ny − y0)a

showing that (79) should be replaced by

n−a logP
(

1
n
Sn > y

)
n↑∞→ −sV + (0) ya < 0. (80)

This formula exhibits a slower decay to zero of
P
(

1
nSn > y

)
, due to the presence of moderately heavy

tails as a < 1.

Note that the arithmetic mean for the observed sequence
(Y1, ..., Yn) , say 1

nSn, corresponds to a geometric mean of
the hidden energy records (Z1, ..., Zn):

∏n
m=1 Z

1/n
m . The

law of large numbers which states that 1
nSn → mY almost

surely obviously reads in terms of the energy records

n∏
m=1

Z1/n
m →

n↑∞
expmY , almost surely. (81)

This observation and the large deviation results just men-
tioned show that there are large deviation results for the
energy sequence itself, (Zm,m ≥ 1) but not in terms of its
empirical arithmetic mean (it simply could not converge
as a result of heavy-tailedness of its distribution), rather of
its empirical geometrical mean. In explicit form, (79, 80)
read in terms of the geometrical mean of the energies

n−1 logP

(
n∏

m=1

Z1/n
m > z

)
→
n↑∞

f (log (z/z0)) < 0

as a ≥ 1 (82)

n−a logP

(
n∏

m=1

Z1/n
m > z

)
→
n↑∞
−sV+ (0) log (z/z0)a < 0

as a < 1. (83)

The fact that this min-semistable observable exhibit at
most moderately heavy right tails and the logarithmic
scale arguments suggest that when dealing with this se-
quence of log-minsemistable intensities, if one is to un-
derstand an average event, one should rather work either
with the maximum of the sequence or through geometri-
cal averaging since the standard arithmetic averaging of
energies may be extremely ill-defined.

6 Discussion of main results

Let us summarize the main results of the preceding sec-
tions on max- and log-max semistable distributions.

We first recall the importance in Statistics and under-
line some properties of the max-stable Fréchet-Weibull-
Gumbel distributions which are known to embody the only
possible limiting distributions for centered and normalized
maxima of iid random variables in this version of the Cen-
tral Limit Theorem.

We then focus on a concept whose statistical insight is
indeed deeper than the one of stability, namely the one of
max-semistability, leading to a larger class of distributions.
These can be defined as the fixed point of some functional
equation (an invariance principle) for their probability dis-
tribution function which basically reflects the statistical
self-similarity properties of their solutions; the analogy of
this statistical point of view with the ones of Discrete Scale
Invariance and Log-periodicity arising from Renormaliza-
tion Group theory in the Physics’ literature is underlined
but not solved. We characterize the possible solutions to
this functional equation, extending the three max-stable
distributions in that their scale parameters are no longer
constant, but rather allowed to vary in a log-periodic fash-
ion. These distributions stand as appealing candidates
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to model observed random events in the Natural Sciences:
indeed, from this formulation, the observed “global” ran-
dom event interprets as the maximum of a Poissonian
number of “micro-events” but with unknown intensity, lo-
cation and scale parameters.

It turns out that the first two solutions of these max-
semistable distributions may also be viewed as the ex-
ponentials of the third and may thus be considered as
log-max-semistable as well. To complete the picture, we
exhibit, the six possible types of log-max-semistable (and
also of log-min-semistable) distributions, adding four sta-
tistical distributions to the two already mentioned from
this class.

Observable are often modeled through the logarithms
of other quantities with much more physical meaning,
such as the “energy” or intensity of some underlying phe-
nomenon: this means that max- or min-semistable vari-
ables are to be considered as the observable of some “hid-
den” physical phenomenon, which therefore proves itself
log min-(or max )-semistable. Consequently, it is argued
that such distributions should be ubiquitous in the mod-
elling of random events measured in logarithmic scale: this
observation motivates the full description of these distri-
butions which is supplied.

We finally focus on a particular log min-semistable
model which exhibits some sort of a “Pareto” critical be-
havior when the structure parameter crosses the value one:
the logarithmic scale argument suggests that when dealing
with a sequence of such intensities, if one is to understand
an ”average” event, one should rather work either with the
maximum term of the sequence or use geometrical rather
than arithmetical averaging.
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