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RATE OF CONVERGENCE FOR COMPUTING 
EXPECTATIONS OF STOPPING FUNCTIONALS 
OF AN a-MIXING PROCESS 

MOHAMED BEN ALAYA,* LAGA URA 742 and CERMICS 

GILLES PAGES,** Universite Paris 12 and Univ. P. & M. Curie 

Abstract 

The shift method consists in computing the expectation of an integrable functional F 
defined on the probability space ((Rd)N, B(Rd)1N, I0tN) (t, is a probability measure 
on Rd) using Birkhoff's Pointwise Ergodic Theorem, i.e. 

n-1 
- F o Ok - E(F) a.s. 

k=O 

as n -> +oo, where 0 denotes the canonical shift operator. When F lies in 
L2(.FT, A1?N) for some integrable enough stopping time T, several weak (CLT) or 
strong (Gal-Koksma Theorem or LIL) converging rates hold. The method successfully 
competes with Monte Carlo. The aim of this paper is to extend these results to more 

general probability distributions P on ((Rd)N, B(Rd)0N), namely when the canonical 

process (Xn)ncN is P-stationary, a-mixing and fulfils Ibragimov's assumption 

E .^c/(2+)(n) < +oo 
n>O 

for some 8 > 0. One application is the computation of the expectation of functionals 
of an a-mixing Markov Chain, under its stationary distribution Pv. It may both provide 
a better accuracy and save the random number generator compared to the usual Monte 
Carlo or shift methods on independent innovations. 

Keywords: a-mixing process; Monte Carlo method; rate of convergence 

AMS 1991 Subject Classification: Primary 60F05; 60F15; 60F17 

1. Introduction and mathematical framework 

The origin of the problem is motivated by the computation of the expectation of a functional 
F defined on the canonical space ((Rd)N, B3(Rd)N, g0N) using Birkhoff's Pointwise Ergodic 
Theorem. Several contributions (Bouleau [4, 5] and Ben Alaya [1, 2]) have established some 
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rates of convergence for a wide class of square integrable functionals, namely T -measurable 
for some integrable enough stopping time T. As a matter of fact, both strong (Gal-Koksma 
Theorem, Law of the Iterated Logarithm (IL)) and weak (Central Limit Theorem (CLT)) 
convergence rates hold in Birkhoff's Theorem. 

More specifically, one considers the canonical space ((Rd)N, (IRd)0N) endowed with the 

product measure /uN, the canonical projections Xk, k > 0, defined for every o := (wk)k>o E 

(Rd) by Xk () := k and the (left) shift operator on (Rd) 0 (Xo, X1, ... *) := (X1, X2, .. ). 
It is widely known (see e.g. [13]) that since the dynamical system ((Rd)N, B(Rd), / N, 0) 
is ergodic, the Birkhoff Pointwise Ergodic Theorem implies that 

In-I 
VFeL((IW d)N,0), N-a.s. - eFo k IE(F)= f Fd/N. 

k=O 

Similarly, one can define the right shift (this time on (Id)2) by setting Xn o 0* = Xn-1. 
Then, identifying L ((lRd)N, /eN) to a subspace of L ((RId), /2z), 

ln-I 

V F L' ((Rd), /LN), /xN-a.s. - E F o (*)k -> E(F)= f FdzYN. 
k=O 

The Shift on Independent Innovations Method(s) (SIIM) simply is (are) the data-processing 
of these convergence results. The expectation IE(F) is then computed by averaging some 

dependent paths while the usual Monte Carlo Method (MCM) requires some independent 
paths. 

The main theoretical results concerning the 0-shift method are summarized below (see [2]). 
Let T be a .nX-stopping time, where an N-valued random variable is an rnX-stopping time 
if {T < n} E FTx for every n E N. Let F E L2(RN, B(MR)0N) be an TX-measurable 
functional, where Tx := {A E F /A n {T < n} E x}X for every n N, and where 
.TX := a(Xo, . , Xn) denotes the natural filtration of the canonical process (Xn)nEN. Then 
if T E L2+p for some p > 0, we can state the following. 

1. 
+00 

ca2(F) := Var(F) + 2 E Cov(F, F o 0k) 
k=l 

is absolutely convergent, which in turn implies the following. 

2. The Gal-Koksma Theorem holds, i.e. 

n-1 

> 0, - F o0k - IE(F) = o(n1/2(log(n))3/2+,) tN-a.s. 
k=O 

3. The CLT theorem holds, i.e. whenever a (F) y 0 

n-I 

1 (F ok - IE(F)) -C K(0; 1), 
a(F)/n C(F o - 

where A(0; 1) denotes the standard normal distribution and > the convergence in 
distribution. 
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4. Moreover, if the stopping time T has finite polynomial moments (this assumption is 
slightly relaxable), the LIL holds, i.e. 

n-I 1 

lim sup (F o Ok -E(F))/2n =(F))2loglog (F) 
n + oo k=O J 

and 

n-I 

lim inf (F o k - EF)) / /2nlog logn = -o (F). 
k=0O 

Similar results are obtained for 0* (see [5]). The computational performances of the SIIM lie 
in the use of a storage box that partially avoids the useless re-simulation of all the innovations 
Xi when passing from a path to another, while this is necessary in the usual MCM. Hence, for 
the same number of iterations, we observed in true simulations that the SIIM runs faster than 
the classical MCM (see [2]). The time savings are at the expense of the data storage (dynamical 
or not) which is typical of the antagonism between time complexity and storage complexity. On 
the other hand, the SIIM also calls the random number generator less often than the MCM does. 
This may be crucial for large scale simulations. However, when a2(F) > Var(F), the required 
number of iterations is higher. Unfortunately no satisfactory estimate of ar2(F)/Var(F) is 
known to us and it is likely that, for most naturally encountered functionals F, this ratio is 
greater than 1. The balance between these two effects depends on the choice of F. 

The aim of the paper is to extend these results to more general stationary probability dis- 
tributions IP. Whenever the dynamical system ((Id)N, B(Rd)0N p, , ) is ergodic, Birkhoff's 
Theorem directly applied on the shifted paths of a IP-integrable functional F yields 

n-I 

P-a.s. - F ok > IE(F). (1) 
k=O 

Of course, the plain ergodicity cannot provide a rate of convergence in the Birkhoff Pointwise 
Ergodic Theorem without any further assumption (see [13]). That is why we will assume from 
now on that the canonical process (Xn)n,N on ((Id)N, B(Rd)?N) shares a strong mixing 
assumption, namely the Ibragimov a-mixing assumption, under the probability I. This notion 
turns out to be the natural extension of the former of i.i.d. random variable setting in terms of 
Limit Theorems for our stopping functionals. 

The a-mixing Markovian setting is a natural domain of application for these techniques. 
In fact, let (Xn)n,, be a homogeneous Markov chain on Rd with transition P(x, dy) and 
a starting distribution [to. A commonly encountered problem of Numerical Probability is to 
compute an approximation to E, (f(Xo, , , X-1)) where v denotes the invariant probability 
measure -assumed to be unique- of the transition P. When the chain is positively recurrent 
(resp. stable), the natural method is to apply the Law of Large Numbers along the available 
paths of the chain that is, for every x e Rd, for every f : (Rd)e > R bounded Borel (resp. 
continuous) function 

n-1 

Vx e Rd(, 

- 

( , Xk-) E (f(Xo, . , Xe-1)) lx-as. (2) 
nk k=0 
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The rate of convergence in (2) is ruled by several classical theorems like the CLT or the LIL 
under some standard assumptions (see e.g. [9]). 

When f is no longer a function of finitely many X,'s but is a functional F defined on the 
whole canonical space ((Rd)?N, B(Rd)0N) of the chain, the computation of E, (F), either by 
simulation or from statistical data, cannot be carried out so easily. The first natural idea is to 
implement the usual MCM. However this approach turns out to be costly in terms of CPU 
time. Starting from experimental facts on the SIIM, one can try using Equation (1) under IP 
and shift on the chain itself. We will call this method the Shift Process Method (SPM). 

The Markov assumption on (Xn)n,, will be dropped in the theoretical part of the paper. 
Then, the theoretical results will be applied to stationary a-mixing Markov chains. Finally, the 
three methods (MCM, SIIM, SPM) will be compared numerically on two a-mixing Markovian 
models of the form X,+i = h (Xn, Yn), where the underlying innovations Yn are independent. 

The paper is organized as follows. Section 2 is devoted to some background on the main 
tools used in the rest of the paper. The definition of an a-mixing process is recalled along 
with the Ibragimov Central Limit Theorem for a-mixing sequences satisfying the Ibragimov 
assumption (Section 2.1). The Gal-Koksma Theorem in the L2-stationary setting is recalled at 
Section 2.2. This will be our basic result when dealing with the a.s. rate of convergence (except 
for the LIL investigated in Section 5). 

Section 3 deals with the a.s. rate of convergence of the shift method for stopping func- 
tionals. This result essentially relies on the finiteness of a pseudo-variance, denoted r2(F). 
In Section 4, a Central Limit Theorem is established under the same hypothesis. In Section 
5, after recalling Philipp and Stout's Theorem, an LIL is established, only for a subclass of 
stopping functionals having finite polynomial moments. Section 6 is dedicated to the Markov 
setting. Some standard a-mixing criteria for (stationary) Markov chains are recalled (Section 
6.1) and the simulation framework is presented (Section 6.2). Some numerical simulations 
on three a-mixing Markov processes satisfying the Ibragimov assumption are processed in 
Section 7. A simple Metropolis-like algorithm (Section 7.1) is considered in two different 
settings, so that the invariant distribution v is alternately explicitly known (Section 7.1.1) and 
not explicitly known (Section 7.1.2). The third example, a Vector Quantization algorithm, will 
illustrate some possible false convergence phenomena (Section 7.2) when v is not explicitly 
known. 

Throughout the text L P (, A, IP) will denote the set of A-measurable real-valued function- 
als F whose LP-norm 

IFIlp := IFIPdPJ 

is finite. From now on, the shift operator 0 will be the canonical shift on (IRd)N. 

2. Some background 

2.1. a-mixing sequences and the Central Limit Theorem 

We are going to recall some results on a-mixing processes (see e.g. [7]). Let a := (a (n)neN) 
be a sequence of real numbers, satisfying limn,,+o a(n) = 0, and let (Xn)n,N be an Rd_ 
valued process defined on a probability space (Q, A, IP). (Xn)nEN is a-mixing if, for every 
k, n , n > 1, 

IP(A n B) - I(A)IP(B)i < a(n). 
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Intuitively when a (n) is small then A and B are essentially independent events, hence for an 
a-mixing process the future is asymptotically independent from the present and the past. One 
finds in the literature, various notions of mixing that quantify the dependence between the past 
and the future. Just for comparison, the (p-mixing setting involves the quantity IPI(B/A) - 
IP(B) . The notion of a-mixing is therefore weaker. It is in fact the weakest among all usual 
notions of strong mixing (see [7]). However, this assumption on the sequence (Xn)neN turns 
out to be quite adequate. 

Furthermore, we will say that an a-mixing process (Xn)n,N satisfies the Ibragimov assump- 
tion if 

(/(2+S)(n) < +oo for some S > 0. (3) 
n>O 

Historically, the CLT for a-mixing processes is due to Ibragimov (1962) (see [7] or [12]). 
It essentially holds under the above assumption (3). 

Theorem 1. Suppose that (Xn)ncN is a centred real valued strictly stationary a-mixing pro- 
cess with E +0a (n)/(2+) < +oo and lEXo 12+ < +oo for some 8 > O. Then the sequence 

+00 

a2 := Var(Xo) + 2 E Cov(Xo, Xk) 
k=l 

is absolutely convergent. Furthermore, if a > 0, then 

XO+Xl+'''+Xn-I ? fA/(0; 1) as n -- +oo, 
xo? x1?A..+xn-1f L 

where A(O; 1) denotes the standard normal distribution and -> represents the convergence 
in law. 

This result relies, on one hand, on the fundamental Central Limit Theorem for martingale 
increments and, on the other hand, on the covariance inequality below (see [7], p. 9). (A Rd- 
valued process (Xn)neN is strictly stationary if for every k E N, (Xn+k)nEN and (Xn)neN 
have the same distribution, i.e. if IP denotes the distribution of (Xn)nEN on the canonical space 
((Rd)N, B3(d)N), IP o 0 = II with the notations of Section 1.) 

Proposition 1. Let (Xn)nEN be a strictly stationary a-mixing process. Then V r, p, q > 1 with 
1/r + l/p + 1/q = 1, V F E LP(k ), V G E Lq(k 

I Cov(F, G)I < 8al/r(n)llFIlpllGllq. 

2.1.1. Application to cylindrical functions. Let us go back to the framework described in the 
introduction. The canonical projections (Xn)nEN are a-mixing on the canonical dynamical 
space ((Rd)N, B(Id)N, IP) with a rate a := (a(n))nEN. Let us call a real valued measur- 
able function F on ((Id)N, B(Rd)eN, I) that only depends on finitely many components a 

cylindricalfunction. 
Such cylindrical functions F behave like the sequence (Xn)nEN itself in the following sense. 

If F only depends on the first N components, then Xn F'N : F o On, n E N, is an aN-mixing 
process with rate 

(n) 1 if n<N 
a (n -N) if n > N. 
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Note that 

+00 +x0 

a y/(2+3) (n) < + 00 a E /(2+6) 
(n) < +00. 

n=0 n=O 

So, one straightforwardly derives the following. 

Proposition 2. Let (Xn)ncN be a strictly stationary Rd-valued a-mixing process. If there is 
8 > 0 satisfying +ZO al/(2+s)(n) < +oo, then for every cylindrical function F E L2+S(IP) 
with I(F) = 0; 

(a) the sequence 
+00 

a 2(F) := Var(F) + 2 E Cov(F o k, F) 
k=l 

is absolutely convergent, 
(b)furthermore, if a(F) > O, then 

n-1 
1 ~? Oc _ E, F o Ok -> A(0; 1) as n -> +oo. 

2.2. Rate of almost sure convergence 

As a first step, we recall the Gal-Koksma Theorem established in [11]. We will restrict 
our attention to L2-stationary processes (see [1] for a probabilistic proof in a quite general 
framework). 

Theorem 2. Let (Q2, A, IP) be a probability space and let (Xn)ncN be a L2-stationary se- 

quence of random variables such that IEI X + X2 + ... + Xn 12 = O(n). Then 

V e > 0 X1 + X2 + + Xn = o(nl/2(log(n))3/2+) P-a.s. 

Coming back to the canonical dynamical system ((Rd)N, B(Rd)0N, P, 0), we derive from 
the previous theorem a strong ergodic result, i.e. a speed of a.s. convergence in Birkhoff's 
Pointwise Ergodic Theorem. 

Proposition 3. Let F E L2((Rd)N, 3(Rd)N, IP) such that E(F) = 0. If 

+o0 

2 (F) :=Var(F)+ 2 Cov(F oOk, F) 
k=l 

converges, then 

n-1 

V > 0, - F o k = o(n-/2(log(n))3/2+E) IP-a.s. 
k=0 

Proof. Using the convergence of the series a2(F) and the fact that 0 preserves the measure 

IP, we first prove that (see e.g. [1]) 

n-1 2n +00 

E( Fo 0k) = -nc2(F)-2 kCov(F ok, F)-2n , Cov(F O 0k, F). 
k=O k=l k=n+l 
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The finiteness of a2 (F) along with the Kronecker lemma yields 

n-1 2 

lim - F ok d 2(F). 
n-- +oc n J(d)N k= 

The Gal-Koksma Theorem completes the proof. 

By its very construction, a functional F that can be simulated on a computer naturally 
appears as a stopping functional with respect to its (almost surely finite) stopping rule T. So 
from now on, we will focus on such JTT-measurable functionals. 

3. An a.s. rate of convergence for stopping functionals 

3.1. A class of YT-measurable functionals with finite a2(F) 
Set .T. := r(Xm,. * , Xn) and JY := u(Xk, k > m). T will denote a on-stopping time 

and F a TT-measurable functional. Finally, [x] will denote the integral part of x. 
Theorem 3 below provides a bound for the covariance Cov(F o Ok, F) from which the 

absolute convergence of the series r2(F) = Var(F) + 2 Ek+0 Cov(F o 0k, F) will follow. It 
is the key result of this work. 

Theorem 3. Let (Xn)ncN be an Rd-valued stationary a-mixingprocess. Assume there is some 
8 > 0 such that E+-?O a?c/(2+^)(n) < +oo. If T is a stopping time and T E LP((9d)N, P)for 

some p > (2 + 8)/(1 + 8) then, for every F E L2+^((lRd)N, TT, IP) with E(F) = O, we have 

I Cov(F o k, F) 

(IE(T p))(l+)/(2+8) 
< 16 1 F 11 2+a/(2+) (k- [k/2]) + IIFII(2+s)/(l+) FII [k/2]P(1+)/(2+8) (4) 

Proof. To establish inequality (4), first notice that 

I Cov(F o ok, F)I < I Cov(F o Ok, F l{T<[k/2]})l + I Cov(F o ok, F. l{r>[k/2]})l. (5) 

Now FoOk is k?" -measurable and F l{T<[k/2]} is Y[k/2]-measurable. By applying Proposition 
1 with r = 1 + 2/8 and p = q = 2 + 8, we obtain 

I Cov(F o ok, F. {T<[k/2]})1 < 8a/(2+^) (k - [k/2])IIF . l{T<[k/2]}112+^ 1F112+S 

< 8a/(2+)(k - [k/2]) IIF11 2+ (6) 

For the second term on the right of inequality (5), the standard Holder inequality with p = 2+8 
and q = (2 + 8)/(1 + 8) first provides 

I Cov(F o k, F l 1T>[k/2})l < IIF o 0 l {T>[k/2]}ll(2+a)/(1+s)llFl2+8. (7) 

Then, it is straightforward that 

EF(I F (2+^)/(1+) o k ? 1{T>[k/2]}) 

< I Cov(lFI(2+8)/(1+8) o 0k, l{T>[k/2]))l + E(IFI(2+S)/(1 +))p(T > [k/2]). 

431 



MOHAMED BEN ALAYA AND GILLES PAGES 

At this stage, we observe that F o Ok is .kJr-measurable and {T > [k/2]} belongs to T[k/2. If 
we apply Proposition 1 with r = 1 + 1/8, p = 1 + 8 and q = +oo, it yields 

IE( F (2+^)/(l+s) 0 k ? l{T>[k/2]}) 
< 8as/(l+s)(k- [k/2])(IE(IFI2+S))l1/(l+^) +IE(IF(2+s)/(l+s))P(T > [k/2]), 

i.e. 

IIF o Ok l{T>[k/2]} 11(2+)/(1+S) < (8a^/(1+s)(k - [k/2]) x (IE(FI12+S))1/(l+6) 

+ IE(IF 1(2+)/(I+))P (T > [k/2]))(+)(2+) 

Plugging this bound in inequality (7) and using inequality (x + y)f < xp + y/, 0 < , < 1, 
x, y > 0, leads to 

ICov(F o k, F. l{T>[k/2]})l < 8(l+^)/(2+6)ao/(2+?)(k- [k/2])11F112+8 

+ IIFll(2+a)/(l+a)llFF12+^(( T > [k/2]))(1+^)/(2+S) 
< 8as/(2+s)(k -[k/2])IIF112 

+ IIFl(2+i)/(1+^)ll F112+s(IP(T > [k/2]))(l+s)/(2+S). (8) 

As T E Lp((Rd)N, B(lRd)0N, I), where P(T > [k/2]) < IE(TP)/[k/2]P. Hence, collecting 
inequalities (5), (6) and (8) finally yields 

Cov(F o Ok, F)I 

(IE(T p))(l+S)/(2+S) < 1611Fl12+Sa^/(2+s)(k - [k/2]) + IIF 11(2+S)/(l+)IIF 112+ (+)/(2+) 

which completes the proof. 

3.1.1. Remarks and improvements. (a) A careful reading of the above proof (namely equation 
(8)) shows that the assumption T e LP for some p > (2 + 8)/(1 + 5) can be slightly improved 
upon, giving 

+o0 

, IP(T > k)(1+S)/(2+S) < +0o. 
k=l 

(b) As (2 + 5)/(1 + 5) < 2, the moment assumption on T is always fulfilled as soon as 
T e L2((Rd)N, 3(IRd)N, IP). 

(c) If the functional F is bounded, then we can simply assume that T is integrable. Indeed, 
if T is integrable, then Ek-+ IP(T > [k/2]) < +oo and the proof can be simplified in this 
setting (which formally corresponds to 8 = +oo). 

(d) Our assumptions on the process (Xn)nEN and the functional F are satisfactory in the 
following sense. 

1. Both conditions n=OO a"/(2+")(n) < +oo and F E L2+8 do not differ from those of 
the original Ibragimov CLT which studies functions only depending on one variable (i.e. 
F(xo, . , x,, ) := f(xo)). 
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2. When a(n) = 0, n > 1, we again find the results of [2] obtained in an independent 
setting. 

(e) The fT-measurability of the functional F for some stopping time T is crucial. In fact, 
we cannot obtain this result as a consequence of those on functionals that can be approximated 
by a sequence (Fk)kN of 0 -measurable cylindrical functions such that Ik+ F - Fk 112 < 

+oo. By such a simple approach (setting Fk := F.lT<k}), we get the result under the much 
more stringent assumption that F E L2+6 and that T has a moment of order p > 4(2 + 8)/8. 

3.2. An a.s. rate of convergence 
As it has been emphasized in Section 2.2 on the a.s. convergence rate, the condition a2(F) < 

+oo is the basic assumption to apply the Gal-Koksma Theorem (Theorem 2). Therefore, we 
derive from the previous theorem the following a.s. convergence result. 

Theorem 4. Under the assumptions of Theorem 3, one has: 

n-I 

V 8 >, F k = o(n- l/2(log(n))32+) IP-a.s. 
k=O 

4. A Central Limit Theorem for stopping functionals 

Theorem 5. Let (Xn)ncN be a id-valued stationary a-mixing process. Assume that there is 
some 8 > 0 such that + a=O ^/(2+ (n) < +o. If T is a stopping time and T E LP(( d)N, IP) 

for some p > (2 + 8)/(1 + 8) then, for every F E L2+S((Rd)N, ST, IP) with E(F) = 0, we 
have 

n-l 

~a2~(F)>0 
2 

(F)>or(F) > F) > 
F ok 

C 
(0; I) as n ?+oo, (9) 

where A/(0; 1) denotes the standard normal distribution. 

To establish the CLT we compute the limits of a2(F.l{T<f}) and a2(F.1{T,>}) when t 
tends to +oo. Indeed, if for every f e H we set 

+00 

2 := o2(F.l{e}) = Var(F.l{T<e}) + 2 Cov(F.l{T<e ok, F.l{re}), (10) I i : =O (F.1,T<F.l={VarT(F. l)T<,l(10) 
k=l 

and 

+00 

tr2 := a(F.1{T>e}) = Var(F.l{r>T}) + 2 E Cov(F.l{r>,e} o k, F.l{T>e}) 
k=l 

Then we have the following results. 

Lemma 1. Under the assumptions of Theorem 5, 

lim a2 = 2 and lim 2- = 0. 
t-- +0o e -- +Ioo 
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Proof. Following Theorem 3, if we replace the function F by F.l{T<el - E(F.l{rT<}) 
(still .T-measurable and centred), inequality (4) yields an upper bound for I Cov(F.l{T<} o 
k, F.l{T<e}), namely 

Cov(F.l{T<e} o0k, F.l{<e})l < 1611-F.ll{T<l - ,(F.l <)l2+aS(2+)(k- [k/2]) 

+ IIF. I{Tr< - E(F.1{T <e}) l (2+8)/(1+8) x lF.l{rT<} 

(IE(T ))(1+8)/(2+8) 
-E(F.l{T<e})112+8 

[k/2]p(1+)/(2+8) 

Now, for every functional G E LP, p > 1, IIG - E(G)IIp < 2GIIllp. Therefore, 

v e E N, I Cov(F.l{T<e} Ok, F.l{T<})l 

< 7211F.l{r<e} lI2+sa^/(2+s)(k - [k/2]) 

(E(T P))(1+8)/(2+8) 
+411F.l{rT<}ll(2+6)/(1+s)llF.l{r<e}112+8 p )/(2+) 

[k/2]p(1+6)/(2+6) ' 

which in turn implies that, for every t E N, 

I Cov(F.l{rT<e} 0 k, F.l{T<e)l < 7211F ll2+^as^(2+)(k - [k/2]) 

(E(T p))(1+8)/(2+8) 
+ 411FI (2+^)/( l+s)llF12+s p(+)/(2+) [k/2]p(l+ )1/(2+3)? 

Hence Equation (10) shows that ao2 is defined as the sum of an absolutely convergent series, 
uniformly, with respect to t. As each term of the series converges towards Cov(F o 0k, F), 
one finally has lim,+o+ ce2 = o2. 

As F.1{T,>} - E(F.1{r>T}) is FT -measurable and centred we obtain (in the same way): 

I Cov(F.l{T>e} o0k, F.l{T>,e)I < 7211Fll2+sa1/(2+)8(k - [k/2]) 

(IE(T p))(1+S)/(2+S) + 411 F ll(2+)/(1+)ll F 112+)/ 
[k/2]p(l+S)/(2+)' 

Hence r2 is also defined as the sum of an absolutely convergent series uniformly with 
respect to i, since each term of the series converges towards 0, lime,+, + = 0. 

Let us prove now the Central Limit Theorem (CLT). 

Proof. Let F E L2((Rd)N, 'rT, P). For every t E N we write 

F = (F.1{T< - E(F.1{T<f})) + (F.1{T>e} - E(F.I{T>e})). 

Then 

n-1 n-1 
- , F o IE = - 

(F-l{<}-E(F.1{T<}1)) o ( 
k=O k=O 

1n- 
+ - (F.l{T>e - E(F.1{T>f})) o k. 

k=O 
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F.1{T<e} - E(F.l{T<e}) is a cylindrical function only depending on the first i variables. 

According to Proposition 2, the first term on the right of the equality converges in distribution 

towards A/(0, a2), for every t e N, with 

+00 

2 = a2(F.l{T<e}) = Var(F.l{T<e}) + 2 Cov(F.l{r<e} 0 k, F.l{T<e}). 
k=l 

From Lemma 1, one derives the convergence in distribution of KA(0, o2) towards AV(0, o2). 

Consequently, it only remains to prove that, for every e > 0, 

n -1 
lim limsup IP F. - E(F.l1{T >)) ok ) = 0. 

+oo00 n-->+oo .I> (F.1 >T k=O 

Then Bienayme-Tchebichev's inequality yields 

P( 
k 

(F.l {>>e } - (F.l{T>e})) O Bk > ) 

k=O 
n-1 2 

n ?8 () L(F.l{r> - IE(F.l{T>e})) o k dP. n2 d)N kd 0 

The convergence of 

n-1 2 

1- R (F.{T> -E(F.l >l{rT>eF)) o ok dP 
n d)N k=O 

towards t2 yields 

n-I 2 

limsup I (F.l1T>e - IE(F.l{r>e)) ok > ? < ' 

k=Lemma 1 completes the proof. 
Lemma I completes the proof. 

Remark. This CLT is satisfactory since it holds under the same Ibragimov assumption that 
rules the standard CLT for a-mixing processes. However, some recent work by Doukhan, 
Massart and Rio [8] shows that the (functional) CLT holds for a stationary a-mixing processes 
(Xn)neN whenever 

l (t)Q2(t)dt < +oc, (12) 

where t a > a-l(t) denotes the canonical inverse of the monotonic function t - > a([t]) and 
Q denotes the quantile function of Xo. 

435 



MOHAMED BEN ALAYA AND GILLES PAGES 

5. The law of the iterated logarithm 

The a.s. estimates for the convergence rate obtained in Section 3.2 using the Gal-Koksma 
Theorem (see Theorem 4) are obviously weaker than those of the standard LIL property. The 
usefulness of these results is to provide an estimate close to the iterated logarithm, but under 
weak and natural assumptions in simulation. However, it is possible to prove a true LIL under 
more stringent assumptions on the functional F and the stopping time T. 

Several results are available in the literature on the asymptotic behaviour of the partial sums 
k=0- Xk of a 'weakly dependent' (Xk)kEN process, or on the partial sums 

n-l 

L F(Xk, Xk+, ...) 
k=O 

of a functional F depending on a 'weakly dependent' process (see [3, 17]). Thus, Philipp and 
Stout (in [17]) provide several invariance principles for the partial sums of 'weakly dependent' 
random variable sequences. Among them some are related to the sum of the functional of a 
delayed a-mixing process. 

5.1. Philipp and Stout's Theorem 

For the sake of simplicity, in the following, we state Philipp and Stout's Theorem in the a- 
mixing stationary case, using the same notations. We go back to the canonical dynamic system 
((R2d)N, (2d) , IP, 0). 

Theorem 6. Let F be a centredfunction E L2+^((IRd)N, IP)for some 0 < < 2, and (Fk)kEN 
an approximating sequence of Tk-measurable functions. We assume the following. 

(i) There is some constant C satisfying 

V n E NI IIF-Fn 1 2+ < n2+7. (13) 

(ii) That 

n-I 2 

E(0 Fo6ok) =nO(n 18/30)asn -- +oo. (14) 

(iii) (Xn)neN is a Id-valued stationary a-mixing sequence with 

a(n) = o(n-168(1+2/S)). (15) 

Then the LIL holds, i.e. 

n-1 

IP-a.s. limsup FoOk = 1 
n-+oo V2n log logn k=O 

n-I 

and liminf F ok = 1 
n- +oo 2n log log n k 

The proof of this theorem is available in [17, Chapter 8]. 
We will now apply this theorem to .T-measurable functionals. 
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5.2. Application to stopping functionals of an a-mixing process 

We now study some classes of functions depending on a stopping time. Hence we consider 
an (So)nlE-stopping time T, and an ST-measurable functional F. 

Theorem 7. Let (Xn)neN be an Rd-valued stationary a-mixing sequence and 8 E (0, 2]. 
Assume that a(n) = o(n-168(1+2/6)). If T is a stopping time and T E LP(^)((Rd)N, I) for 
some p(8) > 2(2 + 8)(1 + 8)(28 + 7)/82 then, for every F E L2+^((Rd)N, ST, IP) with 

E(F) = 0 and r2(F) > 0, the LIL is satisfied, i.e. 

n-1 

IP-a.s. limsup F o k = a(F) 
n--+oo /2nloglogn k=O 

n-l 

and liminf F o ok = -r(F). n +oo V2n loglog n k= 

Remark. Note that 2(2 + 8)(1 + 8)(28 + 7)/52 > (2 + 8)/(1 + 8) at least on (0, 2]. Note 
also that (p(8) :=2(2+ 8)(1 + 8)(28 +7)/82 is a decreasing function on (0,2] so 
(p(8) > (p(2) = 66. For any practical implementation, such a requirement amounts to assuming 
that the stopping time T has moments of every order. 

Proof Without loss of generality, one may assume that a2(F) = 1 and a(n) is a non- 
increasing sequence. We will now show that the assumptions of Theorem 6 are fulfilled. 
According to the proof of Proposition 3 one has 

n-l 2 n +oo 

E( ZFoOk) =n-2 k Cov(FoOk,F)-2n Cov(F , F). (16) 
k=O k= 1 k=n+l 

Let p E ((2 + 8)/(1 + 8), p(8)). So, one has, following Theorem 3, 

VF E L2+^((Rd)N, ST, IP), I Cov(F 0k, F)l << -168(k - [k/2]) + 
[k/2]p(1+6)/(2+6) 

<< a-168(k) + k-p(l+S)/(2+6), (17) 

where < < means that the left term is upper bounded by the right one up to a multiplicative 
constant. Let An := Ek=n+l Cov(F o Ok, F). It follows from (17) that 

+00 +00 +00 

[Anl _ E ICov(F ok, F)l << E a -168(k)+ E k-p(l+8)/(2+6) 
k=n+l k=n+l k=n+1 

<< n-167 + n-P(l+35)/(2+6) 

-167 /2 + 6 30 + 6 2+-30+8 2- 
n-167 +n/30 by setting p := 1+ 30 ) 

n-^ since < 167 + 

< < n 6 since - <- < 167. 
30 - 15 - 
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Now we need to estimate kn=lI k Cov(F o Ok, F). An Abel transform yields 

n n 
k Cov(F ok,F) = Lk(Ak- -Ak) 

k=l k=l 

n 8 1 
<EAk + nAnl << nl-8/30 since 0 < 0 < < 1 

k=O 

Plugging both estimates in (16) shows that assumption (ii) is fulfilled, i.e. 

ln-1 \ 2 

iE F o k) = n + 0(nl-/30). 
k=0 

In order to fulfil (i), if we set Fk := F * {[T<kJ, r := 2(1 + 8) and s := 2(2 + 8)(1 + 8)/6. 
The Holder inequality (applied with the conjugate exponents 2(1 + 8)/(2+8) and 2(1 + 8)/8) 
along with the Bienayme-Tchebichev inequality finally leads to 

]E(T (2+7/S)s)l/s 
k2+7/5 

11 F- FFk\2+s < IIFllr(T > k)/s < I FIlr k2+7/18 

So (i) holds whenever T admits a moment of order 2(2 + 8)(1 + 8)(28 + 7)/32. This com- 

pletes the proof. 

Application. The restriction on the a-mixing coefficient is here very drastic. In practice it 
is essentially satisfied in the geometric framework. Thus, one recovers the result of the i.i.d. 

setting (i.e. a(n) = 0, n > 1). 

Remark. The very same remark as that made in Section 4 holds here as a recent paper by Rio 
(see [18]) shows that the LIL holds under assumption (12). 

6. Markov setting 

6.1. a-mixing Markov chains 

We consider a Rd-valued Markov chain defined by its transition probabilities (7r (x, -))xcRd. 
We denote by Px the probability distribution on the canonical space ((R9d), B(Rd)0N, IP) for 
which the sequence of canonical projections (Xn)neN is a Markov chain with transition 7r 

and initial distribution 8x. To deal efficiently with our expectation computation problem, it is 

necessary to suppose the existence of a stationary distribution v (i.e. vr- = v), in other words 

VA e B(Rd)N, v(A) = fr (x, A)v(dx). 
d 

Let 

P,: j IPv(dx). 
d 

One has 0(Pv) = PDv, i.e. under Iv the process (Xn)nel is strictly stationary. Let us recall now 
a characterization of the a-mixing in the framework of Markov chains. 
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Proposition 4. (Cf. [7].) Let (Xn)n,, be a Markov chain with stationary distribution v and 
transition probabilities (n (x, .))xER d. If 

rim f sup 17rn(x, A) - v(A)lv(dx) = 0, 
n--+Oo Jd AEB(Rd) 

then the process (Xn)n,E is a-mixing under the stationary distribution Iv, with 

a(n) < 2 sup I rn(x, A) - v(A)lv(dx). 
d AeB(Rd) 

We provide the proof for the reader's convenience. 

Proof Let A E .Tk and B E FT+n. Set h(x) := Ex(1). We will denote by ll/iII the 
total variation of a signed measure /u (that is, 11/tl := I/tI(Rd)). First note that there is some 
B E o0 such that B = (n+k)-l (B). Hence h(x) := IE(1l o on+k). The stationarity of v 

implies that 

v(h) = fv(dx)Ex (lB o On+k) = J(dx)IEx (B) = Pv(B). 

Then 

IlP(A n B) - IP(A)P (B)I = IEV (1A(Ev (lo n+k/l+k) _ P(B))) 

= IEv (lA (En+k (1l) - Pv(B)))I 

= IE(1A(h(Xn+k) - v(h)))l 

= jv(A J h(x)(7n(Xk, d)-v(dx))) 

< (1A llr7n(Xk, dx)- v(dx)ll Ilhllo). 

As the functions h and 1A are [0, l]-valued, it follows that 

IP,(A n B) - P,(A)EP(B)I < E, (lrn"(X, .) - vl) = f Irn(x, *) - vllv(dx). d 

The inequality II zlt l < 2 supAEB(Rd) I u(A) I completes the proof. 

6.1.1. Connection with the ergodicity properties of a Markov chain. In the Markov chain 
literature, two classes have especially been studied. Let A be a non-negative function such 
that 

J A(x)v(dx) < +oo. 
d 

We assume that 

sup l7n(x, B) - v(B)I < A(x)un with lim un = 0. (18) 
BEB(IRd) 

n--+oo 

If Un := pn, 0 < p < 1, (18) is called the geometric ergodicity property and if un := l/nY, 
y > 0, (18) is called the Riemann recurrence property. In all cases, under IPv, we have an 
a-mixing Markov chain with a(n) = O(un). 
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General remark. Concerning the convergence in distribution, one has to note that all results 
which are stated below exclusively hold under IPv. On the other hand all results dealing with 
almost sure convergence, established under the distribution IPv, remain true under IPx for v and 
almost every x. 

Comment. The LIL established in Theorem 7 stresses the interest of the Strong Ergodic 
Theorem (Theorem 5) obtained in Section 3.2 which yields a rather similar result, but under 
much looser assumptions on the a-mixing coefficient. Thus, Theorem 5 holds in the case of 
Riemann recurrence as soon as y > 1 + 2/8 while y > 168(1 + 2/8) is necessary to get the 
LIL. 

6.2. Mathematical and simulation framework 

Let (Xn)n,N be an homogeneous Markov chain admitting a representation of the form 

Xn+1 = h(Xn, Yn+I), n > 0, Xo - uo, (19) 

where h : Rd x R -> Rd is a Borel function (for notational convenience we will assume 
that p = 1), (Yn)neN is an i.i.d. sequence of ,t distributed innovations and tuo is a (starting) 
distribution on Rd. One can notice that, if F is a functional of the Markov chain (Xn)neN 
starting at x E Rd, there is some functional G on Id x RN such that 

F(Xo, X1, . . , Xn, " * *) = G(x, Y1, Y2, .. , Yn, ' ). 

So, the SIIM naturally yields an estimate and an error bound for 

Ex (F)= l G(x, y, ,Yn,..)d (yo, Yl ...Yn...... ) 

It is possible to approximate IEo (F) in the same manner with some similar weak and strong 
error bounds whenever the starting distribution Ito of Xo can be simulated from the distribution 
,t of the innovation Yo (i.e. there exists some sp s.t. (p(Yo) -- to). 

Among all the possible starting distributions tuo for the chain, the invariant one, say v, plays 
an essential role for obvious reasons related to statistics or simulation. However the compu- 
tation of functional expectations under IPv creates problems when this invariant distribution is 
not explicitly known from the distribution of the innovation ut. This is usually due to the fact 
that no information is available on v except for its existence and uniqueness. One way to apply 
the SIIM or the MCM is to prove that (Xn) converges fast enough to v for any starting value 
x E Rd (that is Ttrn (dy) -- v(dy) in distribution or, if possible, in variation). This will be 
the case when the chain (Xn)nEN has further properties as Doeblin or geometrical ergodicity, 
Riemann recurrence or even stability (see below and [9] or [7]). 

Anyway, whatever method is used (MCM or SIIM) getting an approximate for E, (F) 
requires, prior to the simulation of every independent trial of F (or every F o Sk), the re- 
simulation of an approximately v-distributed starting value. Practically, it amounts to assigning 
Xo := Xno for a large enough no. Such preliminary simulations are CPU time and random 
number consuming. The major drawback eventually remains that the method actually con- 
verges to EL(Xno) (F) with no available control on the bias. 
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On the other hand, if the chain (Xn)n,, is ergodic, Birkhoff's Theorem applied on 

((Rd)N, B(iRd)N, Pv) to the canonical shift 0, yields 
n-1 

Pv-a.s. -L F o k E, (F) as n -- +o. (20) 
k=O 

It follows that the convergence also holds IPx-a.s. for v-almost every x E Rd. So, whenever the 

(Xn)nEN is a-mixing, the above theoretical results would provide some valuable information 
about expectation computation based on a direct shifting of the (Xn)nEN (SPM). The SPM has 
the same possible advantages as the SIIM, i.e. preservation of the random number generator, 
saving (more) time by a drastic reduction of the numerical computations. Besides which, SPM 

converges to the true value IE (F) and there is no longer a theoretical bias. On a more practical 
point of view, no preliminary simulation (or computation) of an approximately v-distributed 

starting value X0n is really necessary. 

7. Applications and simulations 

Most stopping times used in simulations are actually some hitting time TA of a given Borel 
set A, that is 

TA := min{n e N / Xn E A}. 

So we will concentrate in the examples below on functionals related to such stopping times 
(these functionals can be the stopping time itself). 

7.1. A simple Metropolis like algorithm 
The simplified version of the Metropolis algorithm used for the testing procedure below is 

mentioned in [19]. Let p be a [0, ]-valued function defined on the whole real line and set 

Xn+ [1 
X, if Un+ > p(Xn) (21) 

n Zn+l if Un+l < P(Xn), 

where Yn := (Un, Zn)n>1 is a sequence of i.i.d. random vectors with distribution U([0, l])0tt. 
Usually, such a procedure is implemented to provide some approximately v-distributed 

numbers. It looks a bit like the rejection method except that the number of trials before getting 
one (almost)-v distributed number can be a priori bounded. 

As soon as 

p ld/, ? < +oo, v := p dt 

is the unique invariant distribution for the chain. 

7.1.1. Afirst example (v is explicitly known). When ,/ has a compact support, say the unit inter- 
val [0, 1], it is obvious that for every [0, 1]-valued starting value x, the whole process (Xn)nEN 
lives in [0, 1]. Then, if p is continuously defined on [0, 1], the transition (Jr(x, dy))xe[0,1] is 
Feller on [0, 1]. Under the above uniqueness assumption of the invariant probability distribu- 
tion, the chain is then v-stable. 

For example, if u := (a + 1, 1) and 

0 ifx >0, 

p(x) x ifx E [0, 1], 
1 ifx> 1, 
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then v-stability holds for v = /f(a, 1). In that special setting, one can show, by following [8], 
that the chain is in fact a-mixing (even /3-mixing). 

For our purpose it is more significant to focus on a rather general stopping time, say 
n 

F := T := inf, n > 1, EXk , [-10, 10] , 
k=l 

as the simulated functional. 

7.1.2. Numerical comparison of the methods. This first example makes possible a sketch of 
comparison between the three methods: MCM, SIIM (shift on the innovations) and SPM (shift 
on the chain itself), in terms of CPU time, random number generator, and so on. As a matter of 
fact an exact simulation procedure for the invariant distribution v is available (set Xo Uo/a 
for some uniformly distributed r.v. Uo). The results in Table 1 are for a := 2. 

The CPU times in Table 1 show thatfor a given number of iterations, the SPM method is 7 
times faster than the MCM while the SIIM method is roughly speaking twice faster. Of course 
such factors are strongly dependent of the setting and can in no way be adopted as general 
rules. 

These factors were taken into account to plot Figure 1: while n iterations are processed with 
the MCM algorithm, 7n (or 2n) iterations are processed with the SPM (or SIIM) algorithm. So, 
the abscissa axis represents the CPU time expressed in 'equivalent MCM iteration number' n. 
E.g., above n = 2 x 104 the approximates of E, (T) obtained by the three methods are plotted 
while 2 x 104 iterations were processed with the MCM. 

It turns out that the speed improvement of the method satisfactorily compensates for the 
increase of a2(T). Finally, it turns out that the practical gain essentially lies in the saving of 
the random number generator. 

7.1.3. A second example (v is not explicitly known). When p > 80, one readily confirms that 
the transition 

n(x, dy) := (1 - p(x))8x(dy) + p(x)l(dy) > Eo0t(dy) 

is Doeblin recurrent, hence a-mixing. We set for this example p(x) := 0.25 + 0.5 x e-lIx and 
A := A(0; 1). 

7.1.4. Numerical comparison of the methods. This second example is in some sense more 
realistic as it requires a preliminary simulation of the invariant distribution. This preprocessing, 
supposed to geometrically converge due to Doeblin recurrence, was made using no = 1 000 
trials of the chain (see section 6.2). The simulations are displayed in Figure 2. 

TABLE 1: 

CPU time (s) Used random numbers Ev (F) 
Iterations MCM SIIM SPM MCM SIIM SPM MCM SIIM SPM 

n = 1000 0.370 0.180 0.060 27064 12508 1714 15.740 15.796 15.796 
n = 5000 1.770 0.790 0.240 135627 61695 8412 15.792 16.091 15.691 

n = 10000 2.650 1.990 0.360 272721 123514 16811 15.930 15.994 15.657 
n = 50000 13.190 11.780 2.420 1 361032 616114 83 384 15.916 15.910 15.973 

n = 100000 32.440 18.480 4.610 2722984 1229784 167019 15.932 15.925 15.872 
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FIGURE 1: Estimate for Ev (T) when v is explicitly known 
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FIGURE 2: Estimate for Ev (T) when v is not explicitly known 
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The three methods clearly converge but, seemingly, toward two separate limits; the MCM 
and SIIM methods going on one side, the SPM on another. Two interpretations can reasonably 
be proposed. Either the SPM method is too slow and a false convergence phenomenon occurs, 
or the SPM value is right and both MCM and SIIM (which estimate EC(Xn )(T)) are wrong, 
i.e. IE:(XnO ) (T) Ev (T). 

Taking into account the theoretical properties of the methods developed in Section 6.2, 
along with some further simulations processed in the following with another algorithm (the 
Competitive Learning Vector Quantization), we guess that the best estimate is the one provided 
by the SPM method. However this remains debatable and we would need some large scale 
simulations to draw some general rule. 

7.2. A Vector Quantization Algorithm (1-dim setting) 
7.2.1. The one-dimensional Competitive Learning Vector Quantization algorithm. Let i be a 
probability measure on [0, 1]. One defines on F+ := {u E [0, 1]n / O < ul < * < Un < 1} 
the so-called n-distortion E(x) of a n-tuple x := (xl, ., xn) E Fn+ by 

En(xl, , Xn) := min (xi- u)2%(du). 
J l<i<n 

This function measures how the n-tuple (x , ? ? ?, Xn) can be considered as a good 'skeleton' or 
'quantification' of the distribution it. The lower EnU (x) is, the better x quantifies /. The multi- 
dimensional version of the distortion is widely used in Automatic Classification to optimally 
reduce the size of a data set. Some applications to Numerical Integration are also developed 
(see [15] or [16]). So it is important to reach an element of argminF+ (En). 

It is well-known (see e.g. [6]) that 

VEn(xl, , Xn) = 2 (xi - u)/(du) 
Jxi l<i<n 

where xi := (xi + xi+)/2, 2 < i < n - 1, and xl := 0, Xn+l := 1. Note that VEn admits an 
--+ obvious continuous extension on the closure Fn of F,+. A classical deterministic minimizing 

procedure, x+l := xt - eVEn(xt) (e e (0, 1/2)), seems untractable because of the integral 
form of the gradient when the distribution /c is not uniform. On the other hand, whenever jt 
has a simple simulating procedure, the related stochastic gradient descent (called 'Competitive 
Learning Vector Quantization') is written as follows: 

X? e F+, X - t X- tE (t t+l ) (Xt - wt+ ); (ct) i.i.d. & A/-distributed, 

(22) 

and can be straightforwardly implemented on a computer. Note that the CLVQ algorithm is 
also mentioned in the Neural Network literature as the Kohonen algorithm with 0 neighbour. 
Although such an algorithm with constant step cannot converge in the a.s. sense, most prac- 
titioners implement it that way in order to avoid the metastability problems encountered with 
the algorithm with decreasing step. 

Equation (22) defines, for every E E (0, 1/2), a homogeneous Fn -valued Markov chain. 
When ,i is diffuse (i.e. weights no single point) this chain admits a Feller extension on Fn by 
properly defining the algorithm on n-tuples as having stuck components [6]. Then the existence 
of an invariant probability measure v8 is straightforward and it can be shown that, in fact, 
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FIGURE 3: MCM for various no (estimate for EI (T)) 

v (F+) = 1. On the other hand, it has been established that whenever 

3 0 C [0, 1], open set, s.t. p\lo > 10lo, (23) 

the CLVQ algorithm is Doeblin recurrent on F+ (and consequently has a unique invariant 
probability measure vu even if Az is not diffuse). Many simulations processed with this al- 
gorithm show that the geometric convergence ratio p is very close to 1. 

This family of compactly supported distributions v8, E E (0, 1/2) is tight, and still assum- 
ing that JL is diffuse, one may show (see [6] or [10]) that any weak limiting value v? of the tight 
family (v8)?e(0,1l2) satisfies supp(v?) C {VEu = 01. Thus whenever {VE" = 0} is reduced 
to a single point x*, one has v8 := S,*. 

This is the case if, for example ,z(du) = f(u)du where f is, either strictly In-concave, 
or In-concave with f(0+) + f(l_) > 0 (see [14]). Furthermore, when tL := U([0, 1]), 
x* := ((2k- )/2n)1<i<n. 

7.2.2. The simulations. The simulations were processed with the uniform distribution/ := 
U([0, 1]), n := 10, E := 0.1. All the preliminary simulations were always processed starting 
from the equilibrium point x*. We considered the hitting time 

F:=T:=min{teN/xt 2k- 1)1 
2n 1ikn 2 n 

The MCM. Our aim was to study the convergence of the MCM method as a function of 

C(Xno) where no denotes the number of preliminary simulations (keep in mind that ?(Xno) 
geometrically converges in variation to ve). On the other hand, it has been highlighted that the 
MCM actually approximates EC(Xno ) (T) instead of I (T) and that no control of IIEL(Xn ) (T)- 

445 



MOHAMED BEN ALAYA AND GILLES PAGES 

7- 

6 

5 

3 - 

2- 

1- 

0 1.107 2.107 3.107 4.107 5.107 6.107 7.107 

FIGURE 4: Convergence of SPM (estimate for EI (T)) 
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EV (T) as a function of II ?(Xno) - v I = 0 (pn) is known. Figure 3 shows that if convergence 
holds, it is actually surprisingly slow. Any estimate of Ev (T) obtained by the MCM method 
with less than 5000 preliminary simulations of the starting value for every path of the simula- 
tion of T, provides a meaningless result. 

The SIIM method fails for exactly the same reasons. 
The SPM. Figure 4 displays a simulation by the SPM method processed on 108 trials. It shows 
how slowly it converges toward an approximate value of I, (T) ; 5.1. 
Comparison. A comparison was made (see Figure 5). As with the Metropolis like algorithm, 
the abscissa axis represents the number n of iterations of the MCM. Above every n the values 
obtained for IE (T) by the three methods are plotted 'while n iterations of the MCM were run'. 
Roughly speaking, this amounts to comparing the methods via their CPU time. 

Figure 5 shows that the SPM method converges much faster than MCM and SIIM, or to be 
more specific, is far less costly in term of random number consumption. 

8. Conclusion 

We have extended the a-mixing stationary processes satisfying the usual Ibragimov 
assumption 

^/(2+S)(n) < +oo for some 6 > 0, 
n>O 

to some weak (CLT) and strong (Gal-Koksma, LIL) rates of convergence, using the pointwise 
Birkhoff's Theorem on the canonical dynamical system ((Rd)N, B(Rd)N, P, , 0). Similar res- 
ults had been formerly obtained only in the i.i.d case (i.e. P = /,0N). 

One promising application is the computation of the expectations of stopping functionals 
of an a-mixing Markov chain under its stationary distribution Iv. The main interest with the 
shift method is that no preliminary simulation of the invariant distribution v is required, while 
such simulations are necessary in the MCM before every simulated path or before the first path 
when shifting on the i.i.d. innovations (SIIM). Furthermore, for a given number of iteration, it 
saves the pseudo-random generator by storing intermediary results. 

Both the CLT and the LIL are ruled by a pseudo-variance, 

+oo 

o2 (F) := Var(F) + 2 , Cov(F o 0k, F), 
k=l 

which is typically greater than Var(F) and difficult to estimate! This may create trouble when 
specifying the number of iterations of the simulation and could possibly partially annihilate 
the advantages of the SPM. 

Some initial tests processed on two strongly mixing Markov chains seem promising, if not 
completely conclusive. Large scale tests should be carried out to confirm the efficiency of the 
SIIM simulation method from a numerical point of view. 

From a theoretical point of view, the next question is how to investigate the recent Doukhan- 
Massart-Rio assumption in relation with stopping functionals. 
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