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Abstract

The efficiency of Monte Carlo simulations is significantly improved when implemented
with variance reduction methods. Among these methods we focus on the popular im-
portance sampling technique based on producing a parametric transformation through a
shift parameter θ. The optimal choice of θ is approximated using Robbins-Monro proce-
dures, provided that a non explosion condition is satisfied. Otherwise, one can use either
a constrained Robbins-Monro algorithm (see e.g. Arouna [2] and Lelong [17]) or a more
astute procedure based on an unconstrained approach recently introduced by Lemaire
and Pagès in [18]. In this article, we develop a new algorithm based on a combination
of the statistical Romberg method and the importance sampling technique. The statisti-
cal Romberg method introduced by Kebaier in [12] is known for reducing efficiently the
complexity compared to the classical Monte Carlo one. In the setting of discritized diffu-
sions, we prove the almost sure convergence of the constrained and unconstrained versions
of the Robbins-Monro routine, towards the optimal shift θ∗ that minimizes the variance
associated to the statistical Romberg method. Then, we prove a central limit theorem
for the new algorithm that we called adaptive statistical Romberg method. Finally, we
illustrate by numerical simulation the efficiency of our method through applications in
option pricing for the Heston model.
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1 Introduction

Monte Carlo methods have proved to be a useful tool for many of numerical computations in
modern finance. These includes the pricing and hedging of complex financial products. The
general problem is to estimate a real quantity Eψ(XT ), with T > 0 and (Xt)0≤t≤T is a given

∗This research benefited from the support of the chair ”Risques Financiers”, Fondation du Risque.
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diffusion, defined on B := (Ω,F , (Ft)t≥0,P), taking values in Rd and ψ a given function such
that ψ(XT ) is square integrable. Since the efficiency of the Monte Carlo simulation considerably
depends on the smallness of the variance in the estimation, many variance reduction techniques
were developed in the recent years. Among these methods appears the technique of importance
sampling very popular for its efficiency. The working of this method is quite intuitive, if we
can produce a parametric transformation such that for all θ ∈ Rq we have

Eψ(XT ) = Eg(θ,XT ).

Then it is natural, to implement a Monte Carlo procedure using the optimal θ∗ solution to the
problem

θ∗ = argmin
θ∈Rq

Eg2(θ,XT ),

since the quantity Eg2(θ,XT ) denotes the main term of the limit variance in the central limit
theorem associated to the Monte Carlo method. But how to compute θ∗? To solve this problem,
one can use the so-called Robbins-Monro algorithm to construct recursively a sequence of
random variables (θi)i∈N that approximate accurately θ∗. Convergence results of this procedure
requires a quite restrictive condition known as the non explosion condition (see e.g. [4, 8, 15])
given by

(NEC) E
[
g2(θ,XT )

]
≤ C(1 + |θ|2), for all θ ∈ Rq.

To avoid this restrictive condition, two improved versions of this routine are proposed in the
literature. The first one, based on a truncation procedure called “Projection à la Chen”, is
introduced by Chen in [7, 6] and investigated later by several authors (see, e.g. Andrieu,
Moulines and Priouret in [1] and Lelong in [17]). The use of this procedure in the context
of importance sampling is initially proposed by Arouna in [2] and investigated afterward by
Lapeyre and Lelong in [16]. The second alternative, is more recent and introduced by Lemaire
and Pagès in [18]. In fact, they proposed an unconstrained procedure by using extensively the
regularity of the involved density and they prove the convergence of this algorithm. In what
follows, these two methods will be called respectively constrained and unconstrained algorithms.
In view of this, a Monte Carlo method that integrates this importance sampling recursion is
recommended in practice.

The aim of this paper is to study a new algorithm based on an original combination
of the statistical Romberg method and the importance sampling technique. The statistical
Romberg method is known for improving the Monte Carlo efficiency when used with discretiza-
tion schemes and was introduced by Kebaier in [12]. However, the main term of the limit
variance in the central limit theorem associated to the statistical Romberg method is quite
different from that of the crude Monte Carlo method. It turns out that the optimal θ∗, in this
case, is solution to the problem

θ∗ = argmin
θ∈Rq

Ẽ
(
g2(θ,XT ) + (∇xg(θ,XT ) · UT )2

)
,

where (Ut)t∈[0,T ] is a given diffusion associated to the process (Xt)t∈[0,T ] defined on an extension

B̃ = (Ω̃, F̃ , (F̃t)t≥0, P̃) of the initial space B (see further on). Here, for θ ∈ Rq and x ∈ Rd,
∇xg(θ, x) denotes the gradient of the function g with respect to the second variable at the point
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(θ, x). Moreover, we intend to study the discretized version of this problem. More precisely, we
denote Xn

T (resp. Un
T ) the Euler scheme, with time step T/n, associated to XT (resp. UT ) and

we consider the optimal θ∗n given by

θ∗n = argmin
θ∈Rq

Ẽ
(
g2(θ,Xn

T ) + (∇xg(θ,X
n
T ) · Un

T )
2
)
.

The convergence of θ∗n towards θ∗ as n tends to infinity is proved in the next section. In section
3 we study the problem of estimating θ∗n using the Robbins-Monro algorithm. More preciously,
we construct recursively a sequence of random variables (θni )i,n∈N using either the constrained
or the unconstrained procedure. The aim is to prove that

lim
i,n→∞

θni = lim
i→∞

( lim
n→∞

θni ) = lim
n→∞

( lim
i→∞

θni ) = θ∗, P̃-a.s.

This assertion is slightly complicated to achieve for the unconstrained procedure. In fact, for

fixed i, n ∈ N, the term θni+1 constructed with this latter procedure involves (X
n,(−θni )
T,i+1 , U

n,(−θni )
T,i+1 ),

a new pair of diffusion, with drift terms containing θni . To overcome this technical difficulty

we make use of the θ-sensitivity process given by ( ∂
∂θ
X
n,(−θ)
T , ∂

∂θ
U
n,(−θ)
T ) and we obtain the

announced convergence result (see Theorem 3.2 and 3.3 and Corollary 3.4). In section 4,
we first introduce the new adaptive algorithm obtained by combining together the importance
sampling procedure and the statistical Romberg method. Then, we prove central limit theorems
for both adaptive Monte Carlo method (see Theorem 4.2 and the remark below), and adaptive
statistical Romberg method (see Theorem 4.3) using the Lindeberg-Feller central limit theorem
for martingale array. In Section 5 we proceed to numerical simulations to illustrate the efficiency
of this new method with some applications in finance. The last section is devoted to discuss
some future openings.

2 General Framework

Let X := (Xt)0≤t≤T be the process with values in Rd, solution to

dXt = b(Xt)dt+

q∑
j=1

σj(Xt)dW
j
t , X0 = x ∈ Rd (1)

whereW = (W 1, . . . ,W q) is a q-dimensional Brownian motion on some given filtered probability
space B = (Ω,F , (Ft)t≥0,P) and (Ft)t≥0 is the standard Brownian filtration. The functions
b : Rd −→ Rd and σj : Rd −→ Rd, 1 ≤ j ≤ q, satisfy condition

(Hb,σ) ∀x, y ∈ Rd |b(x)− b(y)|+
q∑
j=1

|σj(x)− σj(y)| ≤ Cb,σ|x− y|, with Cb,σ > 0,

where for x ∈ Rd, |x|2 = x.x stands for the Euclidean norm associated to the inner product
“·“. We have also |x|2 = xtrx where xtr denotes the transpose of x. This ensures strong
existence and uniqueness of solution of (1). In many applications, in particular for the pricing
of financial securities, we are interested in the effective computation by Monte Carlo methods
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of the quantity Eψ(XT ), where ψ is a given function. From a practical point of view, we have to
approximate the process X by a discretization scheme. So, let us consider the Euler continuous
approximation Xn with time step δ = T/n given by

dXn
t = b(Xηn(t))dt+

q∑
j=1

σj(Xηn(t))dWt, ηn(t) = [t/δ]δ. (2)

It is well known that under condition (Hb,σ) we have the almost sure convergence of Xn towards
X together with the following property (see e.g. Bouleau and Lépingle [5])

(P) ∀p ≥ 1, sup
0≤t≤T

|Xt|, sup
0≤t≤T

|Xn
t | ∈ Lp and E

[
sup

0≤t≤T
|Xt −Xn

t |p
]
≤ Kp(T )

np/2
,

where Kp(T ) is a positive constant depending only on b, σ, T , p and q.
The weak error is firstly studied by Talay and Tubaro in [20] and now it is well known

that if ψ, b and (σj)1≤j≤q are in C 4
P , they are four times differentiable and together with their

derivatives at most polynomially growing, then we have (see Theorem 14.5.1 in Kloeden and
Platen in [13])

εn := Eψ(Xn
T )− Eψ(XT ) = O(1/n).

The same result was extended in Bally and Talay in [3] for a measurable function ψ but with
a non degeneracy condition of Hörmander type on the diffusion. In the context of possibly
degenerate diffusions, when ψ satisfies |ψ(x) − ψ(y)| ≤ C(1 + |x|p + |y|p)|x − y| for C > 0,
p ≥ 0, the estimate |εn| ≤ c√

n
follows easily from (P). Moreover, Kebaier in [12] proved that

in addition of assumption (Hb,σ), if b and (σj)1≤j≤q are C 1 and ψ satisfies condition

(Hψ) P(XT /∈ Dψ̇) = 0, where Dψ̇ := {x ∈ Rd | ψ is differentiable at x}

then, limn→∞
√
n εn = 0. Conversely, under the same assumptions, he shows that the rate of

convergence can be 1/nα, for any α ∈ (1/2, 1]. So, it is worth to introduce assumption

(Hεn) for α ∈ [1/2, 1] nαεn → Cψ(T, α), Cψ(T, α) ∈ R.

In order to compute the quantity Eψ(Xn
T ), one may use the so-called statistical Romberg

method, considered by [12] and which is conceptually related to the Talay-Tubaro extrapolation.
This method reduces efficiently the computational complexity of the combination of Monte
Carlo method and the Euler discretization scheme. In fact, the complexity in the Monte Carlo
method is equal to n2α+1 and is reduced to n2α+1/2 in the statistical Romberg method. More
precisely, for two numbers of discretionary time step n and m such that m << n, the idea of
the statistical Romberg method is to use many sample paths with a coarse time discretization
step T

m
and few additional sample paths with a fine time discretization step T

n
. The statistical

Romberg routine approximates our initial quantity of interest Eψ(XT ) using two empirical
means

1

N1

N1∑
i=1

ψ(X̂m
T,i) +

1

N2

N2∑
i=1

ψ(Xn
T,i)− ψ(Xm

T,i).

The random variables of the first empirical mean are independent copies of ψ(Xm
T ) and the

random variables in the second empirical mean are also independent copies of ψ(Xn
T )−ψ(Xm

T ).
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The associated Brownian paths Ŵ and W are independent. Under assumptions (Hψ) and
(Hεn), this method is tamed by a central limit theorem with a rate of convergence equal to
nα. More precisely, for N1 = n2α, N2 = n2α−1/2 and m =

√
n the global error normalized by

nα converges in law to a Gaussian random variable with bias equal to Cψ(T, α) and a limit
variance equal to

Var (ψ(XT )) + Ṽar (∇ψ(XT ) · UT ) ,

where U is the weak limit process of the error
√
n(Xn −X) defined on B̃ an extension of the

initial space B (see Theorem 3.2 in Kebaier [12] ). More precisely, the process U is solution to

dUt = ḃ(Xt)Utdt+

q∑
j=1

σ̇j(Xt)UtdW
j
t −

1√
2

q∑
j,`=1

σ̇j(Xt)σ`(Xt)dW̃
`j
t , (3)

where W̃ is a q2-dimensional standard Brownian motion, defined on the extension B̃, indepen-
dent of W , and ḃ (respectively (σ̇j)1≤j≤q) is the Jacobian matrix of b (respectively (σj)1≤j≤q).

In view to use importance sampling routine, based on the Girsanov transform, we define
the family of Pθ, as all the equivalent probability measures with respect to P such that

Lθt =
dPθ
dP

|Ft = exp

(
θ ·Wt −

1

2
|θ|2t

)
.

Hence, Bθ
t := Wt − θt is a Brownian motion under Pθ. This leads to

Eψ(XT ) = Eθ
[
ψ(XT )e

−θ·Bθ
T− 1

2
|θ|2T

]
.

Let us introduce the process Xθ
t solution, under P, to

dXθ
t =

(
b(Xθ

t ) +

q∑
j=1

θjσj(X
θ
t )

)
dt+

q∑
j=1

σj(X
θ
t )dW

j
t , (4)

so that the process (Bθ
t , Xt)0≤t≤T under Pθ has the same law as (Wt, X

θ
t )0≤t≤T under P. Hence-

forth, we get

Eψ(XT ) = Eg(θ,Xθ
T ,WT ), with g(θ, x, y) = ψ(x)e−θ·y−

1
2
|θ|2T ,∀x ∈ Rd and y ∈ Rq. (5)

We also introduce the Euler continuous approximation Xn,θ of the process Xθ solution,
under P, to

dXn,θ
t =

(
b(Xn,θ

ηn(t)
) +

q∑
j=1

θjσj(X
n,θ
ηn(t)

)

)
dt+

q∑
j=1

σj(X
θ
ηn(t))dW

j
t .

Our target now is to use the statistical Romberg method introduced above to approximate
Eψ(XT ) = Eg(θ,Xθ

T ,WT ) by

1

N1

N1∑
i=1

g(θ, X̂m,θ
T,i , ŴT,i) +

1

N2

N2∑
i=1

g(θ,Xn,θ
T,i ,WT,i)− g(θ,Xm,θ

T,i ,WT,i).
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Of course the Brownian paths generated by Ŵ and W have to be independent. According
to Theorem 3.2 of Kebaier [12] mentioned above, we have a central limit theorem with limit
variance

Var
(
g(θ,Xθ

T ,WT )
)
+ Ṽar

(
∇xg(θ,X

θ
T ,WT ) · U θ

T

)
where U θ is the weak limit process of the error

√
n(Xn,θ −Xθ) defined on the extension B̃ and

solution to

dU θ
t =

(
ḃ(Xθ

t ) +

q∑
j=1

θjσ̇j(X
θ
t )

)
U θ
t dt+

q∑
j=1

σ̇j(X
θ
t )U

θ
t dW

j
t −

1√
2

q∑
j,`=1

σ̇j(X
θ
t )σ`(X

θ
t )dW̃

`j
t . (6)

Therefore, it is natural to choose the optimal θ∗ minimizing the associated variance. As
Eg(θ,Xθ

T ,WT ) = Eψ(XT ) and Ẽ(∇xg(θ,X
θ
T ,WT ) · U θ

T ) = 0 (see Proposition 2.1 in Kebaier
[12]), it boils down to choose

θ∗ = argmin
θ∈Rq

v(θ) with v(θ) := Ẽ
([
ψ(Xθ

T )
2 + (∇ψ(Xθ

T ) · U θ
T )

2
]
e−2θ.WT−|θ|2T

)
. (7)

Note that from a practical point of view the quantity v(θ) is not explicit, we use the Euler
scheme to discretize (Xθ, U θ) and we choose the associated

θ∗n := argmin
θ∈Rq

vn(θ) with vn(θ) := Ẽ
([
ψ(Xn,θ

T )2 + (∇ψ(Xn,θ
T ) · Un,θ

T )2
]
e−2θ.WT−|θ|2T

)
(8)

where Un,θ is the Euler discretization scheme of U θ, solution to

dUn,θ
t =

(
ḃ(Xn,θ

ηn(t)
) +

q∑
j=1

θjσ̇j(X
n,θ
ηn(t)

)

)
Un,θ
ηn(t)

dt

+

q∑
j=1

σ̇j(X
n,θ
ηn(t)

)Un,θ
ηn(t)

dW j
t −

1√
2

q∑
j,`=1

σ̇j(X
n,θ
ηn(t)

)σ`(X
n,θ
ηn(t)

)dW̃ `j
t . (9)

Through the whole paper, we require P(XT /∈ Dψ̇) = 0 and P(Xn
T /∈ Dψ̇) = 0, n ∈ N, that

make (7) and (8) well posed. Also for an integer k ≥ 1 and δ ∈ [0, 1], we denote by C k,δ
b

the set of functions g in C k with kth order partial derivatives globally δ-Hölder and all partial
derivatives up to kth order bounded. In case δ = 0 we simply use the usual notation C k

b .
The following theorem yields estimates on the Lp convergence of Un,θ towards U θ. For the

reader’s convenience, the proof is postponed in the Appendix.

Theorem 2.1 Let p ≥ 1 and θ ∈ Rq. If σ and b are in C 1
b , then both processes sup0≤t≤T |U θ

t |
and sup0≤t≤T |U

n,θ
t | are in Lp. Moreover, if σ and b are in C 1,1

b then we have the almost sure
convergence of Un,θ towards U θ together with the following property

(P̃) ∀p ≥ 1, sup
0≤t≤T

|U θ
t |, sup

0≤t≤T
|Un,θ

t | ∈ Lp and Ẽ
[
sup

0≤t≤T
|U θ

t − Un,θ
t |p

]
≤
Kθ
p(T )

np/2
,

where Kθ
p(T ) is a positive constant depending on b, σ, θ, T , p and q. Consequently, the above

results still hold for the processes U and Un by taking θ = 0.
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The existence and uniqueness of θ∗ is ensured by the following result.

Proposition 2.1 Suppose σ and b are in C 1
b and let ψ satisfying P(ψ(XT ) 6= 0) > 0. If there

exists a > 1 such that E [ψ2a(XT )] and E [|∇ψ(XT )|2a] are finite, then the function θ 7→ v(θ) is
C 2 and strictly convex with ∇v(θ) = ẼH(θ,XT , UT ,WT ) where

H(θ,XT , UT ,WT ) := (θT −WT )
[
ψ(XT )

2 + (∇ψ(XT ) · UT )2
]
e−θ·WT+ 1

2
|θ|2T . (10)

Moreover, there exists a unique θ∗ ∈ Rq such that minθ∈Rqv(θ) = v(θ∗).

Proof: First of all, note that according to Girsanov theorem, the process (Bθ, X, U) under
P̃θ has the same law as (W,Xθ, U θ) under P̃. So, using a change of probability, we get

v(θ) := Ẽ
([
ψ(XT )

2 + (∇ψ(XT ) · UT )2
]
e−θ.WT+ 1

2
|θ|2T

)
.

The function θ 7→ [ψ(XT )
2 + (∇ψ(XT ) · UT )2] e−θ.WT+ 1

2
|θ|2T is infinitely continuously differen-

tiable with a first derivative equal to H(θ,XT , UT ,WT ). Note that, for c > 0 we have

sup
|θ|≤c

|H(θ,XT , UT ,WT )| ≤ (cT + |WT |)
[
ψ(XT )

2 + (∇ψ(XT ) · UT )2
]
ec|WT |+ 1

2
c2T .

Using Hölder’s inequality, it is easy to check that Ẽ sup|θ|≤c |H(θ,XT , UT ,WT )| is bounded by

e
1
2
c2T
(
‖ψ2(XT )‖a‖ec|WT |(cT + |WT |)‖ a

a−1
+ ‖|∇ψ(XT )|2‖a‖|UT |2‖ 2a

a−1
‖ec|WT |(cT + |WT |)‖ 2a

a−1

)
.

Since Eψ2a(XT ) and E|∇ψ(XT )|2a are finite we conclude, thanks to the first assertion in the
above Theorem 2.1, the boundedness of Ẽ sup|θ|≤c |H(θ,XT , UT ,WT )|. According to Lebesgue’s

theorem we deduce that v is C 1 in Rq and ∇v(θ) = ẼH(θ,XT , UT ,WT ). In the same way, we
prove that v is of class C2 in Rq. So, we have

Hess(v(θ)) = Ẽ
[(
(θT −WT )(θT −WT )

tr + TIq
)
(ψ2(XT ) + (∇ψ(XT ) · UT )2)e−θ.WT+ 1

2
|θ|2T

]
.

Since P(ψ(XT ) 6= 0) > 0, we get for all u ∈ Rq\{0}

utr Hess(v(θ)) u = Ẽ
[
T |u|2 + (u.(θT −WT ))

2(ψ2(XT ) + (∇ψ(XT ) · UT )2) e−θ.WT+ 1
2
|θ|2T

]
> 0.

Hence, v is strictly convex. Consequently, to prove that the unique minimum is attained
for a finite value of θ, it will be sufficient to prove that lim|θ|→∞ v(θ) = +∞. Recall that

v(θ) = Ẽ
[
(ψ(XT )

2 + (∇ψ(XT ) · UT )2)e−θ.WT+ 1
2
|θ|2T

]
. Using Fatou’s lemma, we get

+∞ = Ẽ
[
lim inf
|θ|→∞

(ψ(XT )
2 + (∇ψ(XT ) · UT )2)e−θ.WT+ 1

2
|θ|2T

]
≤ lim inf

|θ|→+∞
Ẽ
[
(ψ(XT )

2 + (∇ψ(XT ) · UT )2)e−θ.WT+ 1
2
|θ|2T

]
.

This completes the proof. �
The same results can be obtained for the Euler scheme Xn.
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Proposition 2.2 Suppose σ and b are in C 1
b . Given n ∈ N, let ψ satisfying P(ψ(Xn

T ) 6= 0) > 0.
If there exists a > 1 such that E [ψ2a(Xn

T )] and E [|∇ψ(Xn
T )|2a] are finite, then the function

θ 7→ vn(θ) is C 2 and strictly convex with ∇vn(θ) = ẼH(θ,Xn
T , U

n
T ,WT ). Moreover, there exists

a unique θ∗n ∈ Rq such that minθ∈Rqvn(θ) = vn(θ
∗
n).

Further, we prove the convergence of θ∗n towards θ∗ as n tends to infinity.

Theorem 2.2 Suppose σ and b are in C 1,1
b . Let ψ satisfying P(ψ(XT ) 6= 0) > 0 and P(ψ(Xn

T ) 6=
0) > 0 for all n ∈ N. If there exists a > 1 such that E [ψ2a(XT )], supn∈N E [ψ2a(Xn

T )],
E [|∇ψ(XT )|2a] and supn∈N E [|∇ψ(Xn

T )|2a] are finite. Then,

θ∗n−→θ∗, as n→ ∞.

Proof. First of all, we will prove that (θ∗n)n∈N is an Rq-bounded sequence. By way of
contradiction, let us suppose that there is a subsequence (θ∗nk

)k∈N that diverges to infinity,
limk→∞ |θ∗nk

| = +∞. This implies that on the event {ψ(XT ) 6= 0} we have

lim
k→∞

(
ψ2(Xnk

T ) + (∇ψ(Xnk
T ).Un

T )
2
)
e−θ

∗
nk
WT+ 1

2
|θ∗nk

|2T = +∞.

So, by Fatou’s lemma we get limk→∞ vnk
(θ∗nk

) = +∞ while

vnk
(θ∗nk

) ≤ vnk
(0) ≤ sup

n∈N
E
[
ψ2(Xn

T )
]
<∞.

This leads to a contradiction and we deduce that there is someM > 0 such that |θ∗n| ≤M for all
n ∈ N. Now, it remains to prove that the set S = {x ∈ Rq : θ∗nk

→ x for some subsequence θ∗nk
}

is reduced to the singleton set {θ∗}. Let us consider a subsequence θ∗nk
→ θ∗∞ ∈ S as k tends

to infinity. According to Proposition 2.2 above, we have

∇vnk
(θ∗nk

) = Ẽ
[
(θ∗nk

T −WT )
(
ψ2(Xnk

T ) + (∇ψ(Xnk
T ).Unk

T )2
)
e−θ

∗
nk
.WT+ 1

2
|θ∗nk

|2T
]
= 0.

Now, let 1 < ã < a, using the relation |x + y|ã ≤ 2ã−1(|x|ã + |y|ã) and applying Hölder’s
inequality twice with the boundedness of θ∗nk

established in the first part of the proof we check
easily that there exists c1 > 0 depending on a, T and M such that

Ẽ
[∣∣(θ∗nk

T −WT )
(
ψ2(Xnk

T ) + (∇ψ(Xnk
T ).Unk

T )2
)
e−θ

∗
nk
.WT+ 1

2
|θ∗nk

|2T ∣∣ã] ≤
c1

{
‖ψ2(Xnk

T )‖ãa + ‖|∇ψ(Xnk
T )|2‖ãa‖|U

nk
T |2ã‖ 2a

a−ã

}
.

Thanks to our assumptions supn∈N E [ψ2a(Xn
T )] < ∞ and supn∈N E [|∇ψ(Xn

T )|2a] < ∞ and
Theorem 2.1, we get the uniform integrability. Therefore, using the almost sure convergence of
ψ2(Xn

T ), ∇ψ(Xn
T ) and U

n
T respectively towards ψ2(XT ), ∇ψ(XT ) and UT which is ensured by

(P), (P̃) and P(XT /∈ Dψ̇) = 0, we obtain

∇v(θ∗∞) = Ẽ
[
(θ∗∞T −WT )

(
ψ2(XT ) + (∇ψ(XT ).UT )

2
)
e−θ

∗
∞.WT+ 1

2
|θ∗∞|2T

]
= 0.

We complete the proof using the uniqueness of the minimum ensured by Proposition 2.1. �
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3 Robbins-Monro Algorithms

The aim now is to construct for fixed n some sequences (θni )i∈N such that limi→∞ θni = θ∗n almost
surely. It is well known that stochastic algorithms can be used to answer this issue and find an
accurate approximation of θ∗n = argminθ∈R vn(θ). Indeed, using the Robbins-Monro algorithm,
we construct recursively the sequence of random variables (θni )i∈N in Rq given by

θni+1 = θni − γi+1H(θni , X
n
T,i+1, U

n
T,i+1,WT,i+1), i ≥ 0, θn0 ∈ Rq, (11)

where H is given by relation (10), the gain sequence (γi)i≥1 is a decreasing sequence of positive
real numbers satisfying

∞∑
i=1

γi = ∞ and
∞∑
i=1

γ2i <∞. (12)

Here (Xn
T,i, U

n
T,i)i≥1 is a sequence of independent copies of the Euler scheme associated to

(Xn
T , U

n
T ) adapted to the filtration F̃T,i = σ(Wt,l, W̃t,l, l ≤ i, t ≤ T ), where (Wi, W̃i)i≥1 are

independent copies of the pair (W, W̃ ) introduced before in Equation (3). To obtain the almost
sure convergence of the above algorithm to θ∗n = argminθ∈R vn(θ), we need to check a first con-
dition: ∀θ 6= θ∗n, 〈∇vn(θ), θ − θ∗n〉 > 0, which is satisfied in our context thanks to the convexity
property of vn. Secondly we need also a sub-quadratic assumption known as the non explosion
condition

(NEC) Ẽ [|H(θ,Xn
T , U

n
T ,WT )|2] ≤ C(1 + |θ|2), for all θ ∈ Rq.

Unfortunately, this condition is not satisfied in our context and we will study two different
stochastic algorithms using the Robbins-Monro procedure and avoiding the above restriction.

3.1 Constrained stochastic algorithm

The idea of the “Projection à la Chen” is to kill the classic Robbins-Monro procedure when it
goes close to explosion and to restart it with a smaller step sequence. This can be described
as some repeated truncations when the algorithm leaves a slowly growing compact set waiting
for stabilization. Then, the algorithm behaves like the Robbins-Monro algorithm. Formally,
for a fixed number of discretization time step n ≥ 1, the repeated truncations can be written
in our context as follows. Let (Ki)i∈N denote an increasing sequence of compact sets satisfying

∪∞
i=0 Ki = Rd and Ki (

◦
Ki+1, ∀i ∈ N. For θn0 ∈ K0, α

n
0 = 0 and a gain sequence (γi)i∈N

satisfying (12), we define the sequence (θni , α
n
i )i∈N recursively by

if θni − γi+1H(θni , X
n
T,i+1, U

n
T,i+1,WT,i+1) ∈ Kαn

i
, then

θni+1 = θni − γi+1H(θni , X
n
T,i+1, U

n
T,i+1,WT,i+1), and α

n
i+1 = αni

else θni+1 = θn0 and αni+1 = αni + 1,
(13)

where the function H is given above in relation (10). For i ∈ N, αni represents the number
of truncations of the first i iterations. In fact, as we can see, if the (i + 1)th iteration of
the Robbins-Monro is in the compact set Kαn

i
, then the algorithm will behave like a regular

Robbins-Monro. However, if the (i + 1)th iteration outside the compact set Kαn
i
, it will be

reinitialized. Then, we increase the domain of projection, so we consider the new compact set
Kαn

i +1.

9



Theorem 3.1 Suppose σ and b are in C 1
b . Assume that for all n ∈ N, P(ψ(Xn

T ) 6= 0) > 0
and there exists a > 1 such that E [ψ4a(Xn

T )] and E [|∇ψ(Xn
T )|4a] are finite, then the sequence

(θni )i≥0 given by routine (13), satisfies

1. For all n ∈ N, we have θni −→
i→∞

θ∗n, almost surely where θ∗n is given by relation (8).

2. Reversely, for all i ∈ N, we have θni −→
n→∞

θi, almost surely, where the sequence (θi)i≥0 is

obtained by replacing in routine (13), (Xn
T,i, U

n
T,i) by their limit (XT,i, UT,i), i ≥ 1.

Proof: At the beginning, note that for n ∈ N the existence of θ∗n is ensured by Proposition
2.2. Concerning, the first assertion, we have to check both assumptions of Theorem 3.1 in [16].
The first one given by

∀θ 6= θ∗n, 〈∇vn(θ), θ − θ∗n〉 > 0,

is satisfied in our context thanks to the convexity property of vn. So, it remains to check the
second assumption given by

∀c > 0, sup
|θ|≤c

Ẽ
[
|H(θ,Xn

T , U
n
T ,WT )|2

]
<∞. (14)

This assumption relaxes the usual (NEC) condition on function H used to run the Robbins-
Monro algorithm. Let c > 0, we have

sup
|θ|≤c

|H(θ,Xn
T , U

n
T ,WT )|2 ≤ 2(cT + |WT |)2

[
ψ(Xn

T )
4 + (∇ψ(Xn

T ) · Un
T )

4
]
e2c|WT |+c2T .

Using several times Hölder’s inequality together with property (P̃), it is easy to check assump-
tion (14), since Eψ4a(Xn

T ) and E|∇ψ(Xn
T )|4a are finite.

The second assertion follows easily by induction on (θni , α
n
i ), using that for all i ≥ 1, the

pair (Xn
T,i, U

n
T,i) converges almost surely to (XT,i, UT,i) combined with the assumption P(XT /∈

Dψ̇) = 0. �
Now, by replacing (Xn

T , U
n
T ) by their limit (XT , UT ) in the proof of the first assertion above,

we easily get the following result.

Corollary 3.1 Suppose σ and b are in C 1
b . Assume that P(ψ(XT ) 6= 0) > 0 and there exists

a > 1 such that E [ψ4a(XT )] and E [|∇ψ(XT )|4a] are finite, then the sequence (θi)i≥0 introduced
in the above theorem satisfies

θi −→
i→∞

θ∗ a.s.,

where θ∗ is given by relation (7).

The following corollary follows immediately thanks to theorems 2.2 and 3.1 and Corollary 3.1.

Corollary 3.2 Under assumptions of Theorem 2.2, Theorem 3.1 and Corollary 3.1, the con-
strained algorithm given respectively by routine (13) satisfies

lim
i,n→∞

θni = lim
i→∞

( lim
n→∞

θni ) = lim
n→∞

( lim
i→∞

θni ) = θ∗, P̃-a.s.,

where θ∗ is given by relation (7).

10



3.2 Unconstrained stochastic algorithm

In their recent paper [18], Lemaire and Pagès proposed a new procedure using Robbins-Monro
algorithm that satisfies the classical non explosion condition (NEC). In fact, a new expression
of the gradient is obtained by a third change of probability. Recall that by Proposition 2.2 we
have

∇vn(θ) = Ẽ
(
(θT −WT )

[
ψ(Xn

T )
2 + (∇ψ(Xn

T ) · Un
T )

2
]
e−θ·WT+ 1

2
|θ|2T

)
.

The aim now is to use their idea in our context. To do so, we apply Girsanov theorem, with

the shift parameter −θ. Let B(−θ)
t := Wt + θt and L

(−θ)
t :=

dP(−θ)

dP |Ft = e−θ.Wt− 1
2
|θ|2t, we obtain

∇vn(θ) = Ẽ(−θ)

[
(2θT −B

(−θ)
T )

[
ψ(Xn

T )
2 + (∇ψ(Xn

T ) · Un
T )

2
]
e|θ|

2T
]
.

As (B(−θ), Xn, Un) under P̃(−θ) has the same law as (W,Xn,(−θ), Un,(−θ)) under P̃, we write

∇vn(θ) = Ẽ
[
(2θT −WT )

[
ψ(X

n,(−θ)
T )2 + (∇ψ(Xn,(−θ)

T ) · Un,(−θ)
T )2

]
e|θ|

2T
]
.

Miming the algorithm proposed by [18], we introduce for a given η > 0, a new function

H̃η(θ,X
n,(−θ)
T , U

n,(−θ)
T ,WT ) = e−η|θ|

2T (2θT −WT )
[
ψ(X

n,(−θ)
T )2 + (∇ψ(Xn,(−θ)

T ) · Un,(−θ)
T )2

]
.

Then, we introduce for a gain sequence (γi)i∈N satisfying (12), the algorithm

θni+1 = θni − γi+1H̃η(θ
n
i , X

n,(−θni )
T,i+1 , U

n,(−θni )
T,i+1 ,WT,i+1), θ0 ∈ Rq. (15)

This algorithm would behave like a classical Robbins-Monro one and does not suffer from the
violation of (NEC). Our aim now is to establish the same results satisfied by the constrained
routine (13) and given by Theorem 3.1. This is splitted into two different theorems. It is worth
to note that in this context we will need to control the growth of ψ and its derivatives.

Theorem 3.2 Suppose σ and b are in C 1
b and let ψ satisfying P(ψ(Xn

T ) 6= 0) > 0, for all
n ∈ N. In addition, assume that for λ > 0 we have

|∇ψ(x)| ≤ Cψ(1 + |x|λ) for all x ∈ Dψ̇ and Cψ > 0.

Then, the sequence (θni )i≥0 given by routine (15), satisfies

∀n ∈ N, θni −→
i→∞

θ∗n, a.s.

where θ∗n is given by relation (8).

Proof: To prove the almost sure convergence we will use the classical Robbins-Monro theorem
(see Theorem 2.2.12 page 52 in [8]). Let n ∈ N, under our assumptions the existence of θ∗n is
ensured by Proposition 2.2 and we have to check first that

∀θ 6= θ∗n 〈hn(θ), θ − θ∗n〉 > 0, where hn(θ) = ẼHη(θ,X
n,(−θ)
T , U

n,(−θ)
T ,WT ).

11



This is immediate since hn(θ) = Kη(θ)∇vn(θ) with Kη > 0 and vn is a strictly convex function.

Now it remains to prove that supθ∈Rq Ẽ
[
|Hη(θ,X

n,(−θ)
T , U

n,(−θ)
T ,WT )|2

]
< ∞, which guaranties

the (NEC) condition. By Cauchy-Schwartz inequality we obtain

Ẽ
[
|Hη(θ,X

n,(−θ)
T , U

n,(−θ)
T ,WT )|2

]
≤ e−2η|θ|2T ∥∥|2θT −WT |2

∥∥
2

×
(∥∥∥ψ(Xn,(−θ)

T )2
∥∥∥
2
+
∥∥∥(∇ψ(Xn,(−θ)

T ) · Un,(−θ)
T )2

∥∥∥
2

)
.

Using the polynomial growth assumption on ∇ψ, the second and third term on the right hand
side of the above inequality can be bounded respectively up to a standard positive constant by

1 +
∥∥∥|Xn,(−θ)

T |2(λ+1)
∥∥∥
2
and 1 +

∥∥∥|Xn,(−θ)
T |4λ

∥∥∥
2
+
∥∥∥|Un,(−θ)

T |4
∥∥∥
2
.

In the following proof, C will denote a positive standard constant that may change from line
to line. Let λ1 = 4λ ∨ 2(λ + 1), using the identity (1 + x)ρ ≤ C(1 + xρ) for x ≥ 0 and ρ ≥ 1,
then we have

Ẽ
[
|Hη(θ,X

n,(−θ)
T , U

n,(−θ)
T ,WT )|2

]
≤ Ce−2η|θ|2T (1 + |θ|2)

(
1 +

∥∥∥|Xn,(−θ)
T |λ1

∥∥∥
2
+
∥∥∥|Un,(−θ)

T |4
∥∥∥
2

)
.

As (B(−θ), Xn, Un) under P̃(−θ) has the same law as (W,Xn,(−θ), Un,(−θ)) under P̃, we write

Ẽ
∣∣Xn,(−θ)

T

∣∣2λ1 = Ẽ(−θ)
∣∣Xn

T

∣∣2λ1 = Ẽ
(∣∣Xn

T

∣∣2λ1e−θ·WT− 1
2
|θ|2T

)
and

Ẽ
∣∣Un,(−θ)

T

∣∣8 = Ẽ(−θ)
∣∣Un

T

∣∣8 = Ẽ
(∣∣Un

T

∣∣8e−θ·WT− 1
2
|θ|2T

)
.

Now using Hölder’s inequality, with 1
r
+ 1
r′
= 1, properties (P) and (P̃) and

(
Ẽe−rθ·WT− r

2
|θ|2T

) 1
r
=

e
r−1
2

|θ|2T , we obtain

Ẽ
[
|Hη(θ,X

n,(−θ)
T , U

n,(−θ)
T ,WT )|2

]
≤ C(1 + |θ|2)e−(2η− r−1

4
)|θ|2T .

Then, one sees immediately that supθ∈Rq Ẽ
[
|Hη(θ,X

n,(−θ)
T , U

n,(−θ)
T ,WT )|2

]
is finite by choosing

r ∈ (1, 1 + 8η). This completes the proof. �
In the same way as in the constrained case, we deduce the following result if we replace

(Xn
T , U

n
T ) by their limit (XT , UT ) in the above proof.

Corollary 3.3 Suppose σ and b are in C 1
b . Let ψ satisfying P(ψ(XT ) 6= 0) > 0 and

|∇ψ(x)| ≤ Cψ(1 + |x|λ) for all x ∈ Dψ̇ and Cψ, λ > 0.

Then, the sequence (θi)i≥0, obtained when replacing in routine (15) (Xn
T,i, U

n
T,i)i≥1 by their limit

(XT,i, UT,i)i≥1, satisfies
θi −→

i→∞
θ∗, a.s.

where θ∗ is given by relation (7).
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The aim now is to prove that the same property 2. in Theorem 3.1, is satisfied by the uncon-
strained algorithm (15). This task looks more complicated to achieve, since for a fixed i ≥ 0 the

stochastic term θni also appears in the drift part of the pair (X
n,(−θni )
T,i+1 , U

n,(−θni )
T,i+1 ). To overcome

this technical difficulty we firstly strengthen our hypothesis on the triplet (b, σ, ψ) and secondly

make use of the so called θ-sensitivity process given by ( ∂
∂θ
X
n,(−θ)
T , ∂

∂θ
U
n,(−θ)
T ).

Theorem 3.3 Let b and σ in C 2,δ
b , δ > 0. Assume that ψ is C 2 with polynomial growth as well

as all its partial derivatives until order two and satisfies P(ψ(XT ) 6= 0) > 0 and P(ψ(Xn
T ) 6=

0) > 0, for all n ≥ 1. Then, ∀i ∈ N and ∀p ≥ 1, there exists C > 0 depending only on i, p, b,
σ and T such that

∀n ∈ N∗, Ẽ|θni − θi|2p ≤
C

np
.

Consequently, ∀i ∈ N θni −→
n→∞

θi, a.s. where the sequence (θi)i≥0 is introduced in the above

corollary.

Proof. We first proceed by induction on i ∈ N to prove the first assertion. The case when
i = 0 is trivial since θn0 = θ0 ∈ Rq. We now assume the assertion holds for a fixed integer i and
show that it also holds for i+ 1. First, we write θni+1 − θi+1 = θni − θi − γi+1(H1 +H2) where

H1 := e−η|θ
n
i |2T (2θni T −WT,i+1)

×
[
ψ(X

n,(−θni )
T,i+1 )2 − ψ(X

(−θni )
T,i+1 )

2 +
(
∇ψ(Xn,(−θni )

T,i+1 ).U
n,(−θni )
T,i+1

)2
−
(
∇ψ(X(−θni )

T,i+1 ).U
(−θni )
T,i+1

)2]
and

H2 := e−η|θ
n
i |2T (2θni T −WT,i+1)

[
ψ(X

(−θni )
T,i+1 )

2 +
(
∇ψ(X(−θni )

T,i+1 ).U
(−θni )
T,i+1

)2]
− e−η|θi|

2T (2θiT −WT,i+1)

[
ψ(X

(−θi)
T,i+1)

2 +
(
∇ψ(X(−θi)

T,i+1).U
(−θi)
T,i+1

)2]
.

Hence, for all p ≥ 1, we have

Ẽ|θni+1 − θi+1|2p ≤ 32p−1Ẽ|θni − θi|2p + 32p−1γ2pi+1(Ẽ|H1|2p + Ẽ|H2|2p). (16)

Using the induction assumption we only need to control the second and third terms on the
right hand side of the inequality (16) above.

Term H1 Using that θni is F̃T,i-measurable, WT,i+1 ⊥⊥ F̃T,i we write Ẽ|H1|2p = ẼA(θni ) where
for all θ ∈ Rq

A(θ) := e−2pη|θ|2T Ẽ
[
|2θT −WT |2p

× |ψ(Xn,(−θ)
T )2 − ψ(X

(−θ)
T )2 + (∇ψ(Xn,(−θ)

T ).U
n,(−θ)
T )2 − (∇ψ(X(−θ)

T ).U
(−θ)
T )2|2p

]
.

13



Since (B(−θ), Xn, Un, X, U) under P̃(−θ) has the same law as (W,Xn,(−θ), Un,(−θ), X(−θ), U (−θ))

under P̃ for all θ ∈ R, we obtain by a change of probability measure

A(θ) = e(−2pη− 1
2
)|θ|2T Ẽ

[
|θT −WT |2pe−θ.WT

× |ψ(Xn
T )

2 − ψ(XT )
2 + (∇ψ(Xn

T ).U
n
T )

2 − (∇ψ(XT ).UT )
2 |2p

]
.

By Hölder’s inequality, we obtain ∀r1 ∈ (1,∞),

A(θ) ≤ e(−2pη− 1
2
)|θ|2T‖e−θ.WT ‖r1‖|θT −WT |2p‖ 2r1

r1−1

× ‖|ψ(Xn
T )

2 − ψ(XT )
2 + (∇ψ(Xn

T ).U
n
T )

2 − (∇ψ(XT ).UT )
2|2p‖ 2r1

r1−1
.

As e(−2pη− 1
2
)|θ|2T‖e−θ.WT ‖r1‖|θT −WT |2p‖ 2r1

r1−1
≤ c1(1+ |θ|2p)e(

r1
2
−2pη− 1

2
)|θ|2T , with c1 is a positive

constant depending only on p, r1 and T , one can choose r1 ∈ (1, 1+4pη) such that supθ∈Rq(1+

|θ|2p)e(
r1
2
−2pη− 1

2
)|θ|2T is finite. Hence, we get the existence of a constant c2 depending only on p,

η and T such that

A(θ) ≤ c2‖|ψ(Xn
T )

2 − ψ(XT )
2 + (∇ψ(Xn

T ).U
n
T )

2 − (∇ψ(XT ).UT )
2|2p‖ 2r1

r1−1
. (17)

Since ψ is C 2 with polynomial growth as well as all its partial derivatives until order two then
the function g(x, y) := ψ2(x) +∇ψ(x).y, (x, y) ∈ Rd × Rd, is C 1 and all its partial derivatives
of order one have polynomial growth. Hence, the Taylor expansion on the real-valued function
g yields the existence of a point (X̄n

T , Ū
n
T ) between (Xn

T , U
n
T ) and (XT , UT ) such that

g(Xn
T , U

n
T )− g(XT , UT ) = ∇g(X̄n

T , Ū
n
T ).(X

n
T −XT , U

n
T − UT ).

Then by the Cauchy-Schwarz inequality, the polynomial growth of g and properties (P) and
(P̃) we get the existence of a constant c3 depending only on p, η, T , b, σ and ψ such that

‖|g(Xn
T , U

n
T )− g(XT , UT )|2p‖ 2r1

r1−1
≤ ‖|∇g(X̄n

T , Ū
n
T )|2p‖ 4r1

r1−1
‖|(Xn

T −XT , U
n
T − UT )|2p‖ 4r1

r1−1

≤ c3
np
. (18)

So, (17) and (18) tell us A(θ) ≤ c2c3
np , and we deduce the existence of a deterministic constant

c4 depending only on p, η, T , b, σ and ψ such that

ẼH2p
1 ≤ c4

np
. (19)

Term H2 Using that θni and θi are F̃T,i-measurable, WT,i+1 ⊥⊥ F̃T,i we write Ẽ|H2|2p =

ẼB(θni , θi) where for all (θ, θ′) ∈ Rq × Rq

B(θ, θ′) := Ẽ|e−η|θ|2T (2θT −WT )g(X
(−θ)
T , U

(−θ)
T )−e−η|θ′|2T (2θ′T −WT )g(X

(−θ′)
T , U

(−θ′)
T )|2p. (20)

According to the study of θ-sensitivity of the processes (X
(−θ)
t )t∈[0,T ] and (U

(−θ)
t )t∈[0,T ] given in

lemma 3.1 below, we have that for a time t ∈ [0, T ] the function θ 7→ (X
(−θ)
t , U

(−θ)
t ) is almost
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surely C 1. Hence, we deduce that almost surely the function θ 7→ D(θ) := e−η|θ|
2T (2θT −

WT )g(X
(−θ)
T , U

(−θ)
T ) is also C 1. This allows us to apply Taylor expansion on each component

D`′ of D, `′ ∈ {1, · · · , q}, and by standard evaluations we obtain a constant c5 depending only
on p and q such that

B(θ, θ′) = Ẽ|
q∑

`′=1

(
D`′(θ)−D`′(θ′)

)2|p = Ẽ|
q∑

`′=1

( q∑
`=1

(θ` − θ′`)

∫ 1

0

∂D`′

∂θ`
(tθ′ + (1− t)θ)dt

)2|p
≤ c5|θ − θ′|2p

q∑
`,`′=1

∫ 1

0

Ẽ|∂D
`′

∂θ`
(tθ′ + (1− t)θ)|2pdt.

The term Ẽ|∂D`′

∂u`
(u)|2p is bounded uniformly on u ∈ Rq. More precisely, we have the following

result.

Lemma 3.1 The solutions (X
(−θ)
t )t∈[0,T ] and (U

(−θ)
t )t∈[0,T ] of respectively Itô’s stochastic dif-

ferential equations (4) and (6) have modifications of C 1 with respect to the parameter θ and
their partial derivatives are Lp-bounded for all p ≥ 1. Further, there exists a positive constant
c depending only on p, q, b, σ, ψ and T such that

Ẽ|∂D
`′

∂u`
(u)|2p ≤ c ∀u ∈ Rq and `, `′ ∈ {1, · · · , q}.

For the reader convenience, the proof of this lemma is postponed to the end of the current
subsection. Thus, thanks to Lemma 3.1 above there is a constant c6 depending only on p, q, b,
σ, ψ and T such that B(θ, θ′) ≤ c6|θ − θ′|2p, and it follows from Ẽ|H2|2p = ẼB(θni , θi) that

ẼH2p
2 ≤ c6E|θni − θi|2p. (21)

So, (16), (19) and (21) show that

Ẽ|θni+1 − θi+1|2p ≤ 32p−1(1 + c6γ
2p
i+1)Ẽ|θni − θi|2p + 32p−1γ2pi+1

c4
np
.

Using the induction assumption for stage i, we deduce for p ≥ 1 the existence of a positive
constant C depending only on p, q, b, σ, ψ, T and i such that

∀n ∈ N∗, Ẽ|θni+1 − θi+1|2p ≤
C

np
.

Finally, for all i ∈ N, the almost sure convergence, of θni towards θi as n tends to ∞ is a
classical and immediate consequence of the first assertion shown above, based on the Borel-
Cantelli lemma. �

The following corollary follows immediately thanks to theorems 2.2, 3.2 and 3.3 and Corol-
lary 3.3.

Corollary 3.4 Under assumptions of Theorem 3.3 and P(ψ(XT ) 6= 0) > 0, the unconstrained
algorithm given respectively by routine (15) satisfies

lim
i,n→∞

θni = lim
i→∞

( lim
n→∞

θni ) = lim
n→∞

( lim
i→∞

θni ) = θ∗, P̃-a.s.,

where θ∗ is given by relation (7).

Our task now is to show the result given by Lemma 3.1 and used in the proof of Theorem 3.3.
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Proof of Lemma 3.1 It is worth to note that all theoretical results known on the differenti-
ation of the solution of Itô’s stochastic differential equation with respect to its initial value, can
be extended to any parameter. Thus, thanks to Theorem 4.6.5 in [14], our assumptions on b and

σ ensures the differentiability of the processes (X
(−u)
t )0≤t≤T . Further, if we denote by ∂`X

(−u)
t

the processes where we take the partial derivatives of all components of (X
(−u)
t )0≤t≤T with re-

spect to the `th variable ul then the Rd-valued process (∂`X
(−u)
t )0≤t≤T satisfies the stochastic

differential equation

∂`X
(−u)
t =

(
ḃ(X

(−u)
t )∂`X

(−u)
t − σ`(X

(−u)
t )

)
dt+

q∑
j=1

σ̇j(X
(−u)
t )∂`X

(−u)
t (dW j

t − ujdt). (22)

Moreover, Corollary 4.6.7 in [14] ensures the Lp boundedness of the random variable ∂`X
(−u)
t ,

t ∈ [0, T ] and p ≥ 1. Concerning the process (U
(−u)
t )0≤t≤T , we need a more general result

to study its u-sensitivity, we apply Theorem 4.6.4 in [14] to obtain its differentiability with

respect to u. The process (∂`U
(−u)
t )0≤t≤T is defined similarly and for i ∈ {1, · · · , d}, we denote

by (∂`(U
(−u)
t )i)0≤t≤T its ith component satisfying the stochastic differential system

∂`(U
(−u)
t )i =

(
(∂`X

(−u)
t )trb̈i(X

(−u)
t )U

(−u)
t + ḃi(X

(−u)
t )∂`U

(−u)
t − σ̇`(X

(−u)
t )U

(−u)
t

)
dt

+

q∑
j=1

(
(∂`X

(−u)
t )trσ̈ij(X

(−u)
t )U

(−u)
t + σ̇ij(X

(−u)
t )∂`U

(−u)
t

)
(dW j

t − ujdt) (23)

− 1√
2

q∑
j,j′=1

(
(∂`X

(−u)
t )trσ̈ij(X

(−u)
t )σj′(X

(−u)
t ) + σ̇ij(X

(−u)
t )σ̇j′(X

(−u)
t )∂`X

(−u)
t

)
dW̃ j′j

t .

Moreover, the same Theorem 4.6.4 in [14] ensures that these components are also Lp bounded,
for all p ≥ 1.

Now, let us recall that the Rq-valued function D is defined by D(u) = e−η|u|
2T (2uT −

WT )g(X
(−u)
T , U

(−u)
T ). For `, `′ ∈ {1, · · · , q}, the partial derivative of component D`′ with respect

to u` is given by

∂D`′

∂u`
(u) =

(
2Tδ``′ − 2u`Tη(2u`′T −W `′

T )
)
e−η|u|

2Tg(X
(−u)
T , U

(−u)
T )

+ e−η|u|
2T (2u`′T −W `′

T )
(
∇xg(X

(−u)
T , U

(−u)
T ).∂`X

(−u)
T +∇yg(X

(−u)
T , U

(−u)
T ).∂`U

(−u)
T

)
. (24)

Here, for the function g : Rd × Rd → R, we denote by ∇xg (resp. ∇yg) the gradient with
respect to the first variable x (resp. the second variable y), and the notation δ``′ stands for the
Kronecker symbol. Now, let Y and Z be solution to the following stochastic differential system

dYt,` =
(
ḃ(Xt)Yt,` − σ`(Xt)

)
dt+

q∑
j=1

σ̇j(Xt)Yt,`dW
j
t .
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and

d(Zt,`)
i =

(
(Yt,`)

trb̈i(Xt)Ut + ḃi(Xt)Zt,` − σ̇`(Xt)Ut
)
dt

+

q∑
j=1

(
(Yt,`)

trσ̈ij(Xt)Ut + σ̇ij(Xt)Zt,`
)
dW j

t

− 1√
2

q∑
j,j′=1

(
(Yt,`)

trσ̈ij(Xt)σj′(Xt) + σ̇ij(Xt)σ̇j′(Xt)Yt,`
)
dW̃ j′j

t .

These both processes can be seen as solutions of respectively (22) and (23) at point u = 0,
consequently they are Lp bounded, p ≥ 1. Note that (4), (6), (22) and (23) allow us to apply
Girsanov theorem and deduce that (W,X(−u), U (−u), ∂`X

(−u), ∂`U
(−u)) under P̃ has the same

law as (B(−u), X, U, Y·,`, Z·,`) under P̃(−u). Hence, using relation (24) followed by a change of a
probability measure, we obtain

Ẽ|∂D
`′

∂u`
(u)|2p = Ẽ

[
|
(
2Tδ``′ − 2u`Tη(u`′T −W `′

T )
)
e−η|u|

2Tg(XT , UT )

+ e−η|u|
2T (u`′T −W `′

T )
(
∇xg(XT , UT ).YT,` +∇yg(XT , UT ).ZT,`

)
|2pe−u.WT− 1

2
|u|2T

]
.

Rearranging the terms in the above inequality, we get by Hölder’s inequality ∀r1 ∈ (1,∞)

Ẽ|∂D
`′

∂u`
(u)|2p ≤ e(−2pη− 1

2
)|u|2T‖e−u.WT ‖r1

∥∥(2T + 1 + 2|u`|Tη)2p|u`′T −W `′

T |2p
∥∥

2r1
r1−1

×
∥∥(|g(XT , UT )|+ |∇xg(XT , UT ).YT,` +∇yg(XT , UT ).ZT,`|)2p

∥∥
2r1
r1−1

.

As e(−2pη− 1
2
)|u|2T‖e−u.WT ‖r1

∥∥(2T+1+2|u`|Tη)2p|u`′T−W `′
T |2p

∥∥
2r1
r1−1

≤ c1(1+|u|4p)e(
r1
2
−2pη− 1

2
)|u|2T ,

with c1 is a positive constant depending only on p, r1 and T . Then, one can choose r1 ∈
(1, 1 + 4pη) such that supu∈Rq(1 + |u|2p)e(

r1
2
−2pη− 1

2
)|u|2T is finite. Hence, we get the existence of

a constant c2 depending only on p, η and T such that

Ẽ|∂D
`′

∂u`
(u)|2p ≤ c2

∥∥(|g(XT , UT )|+ |∇xg(XT , UT ).YT,` +∇yg(XT , UT ).ZT,`|)2p
∥∥

2r1
r1−1

.

Since ψ is C 2 with polynomial growth as well as all its partial derivatives until order two then
the function g mapping the couple (x, y) into ψ2(x) + ∇ψ(x).y is C 1 and all its first partial
derivatives have polynomial growth. The proof is completed, thanks to properties (P), (P̃) and
using the Lp boundedness of YT and ZT for all p ≥ 1.

4 Central limit theorem for the adaptive procedure

In this section we prove a central limit theorem for both adaptive Monte Carlo and adaptive
statistical Romberg methods. Let us recall that the adaptive importance sampling algorithm

17



for the statistical Romberg method approximates our initial quantity of interest Eψ(XT ) =

E
[
ψ(Xθ

T )e
−θ·WT− 1

2
|θ|2T

]
by

1

N1

N1∑
i=1

g(θ̂mi , X̂
m,θ̂mi
T,i+1, ŴT,i+1) +

1

N2

N2∑
i=1

(
g(θni , X

n,θni
T,i+1,WT,i+1)− g(θni , X

m,θni
T,i+1,WT,i+1)

)
, (25)

where for all x ∈ Rd and y ∈ Rq, g(θ, x, y) = ψ(x)e−θ·y−
1
2
|θ|2T . Here the paths generated

by W and Ŵ are of course independent. In order to prove a central limit theorem for this
algorithm, we need to study independently each of the above empirical means. This is the aim
of subsections 4.2 and 4.3. We need first to recall some useful results.

4.1 Technical results

Let us recall the Central Limit Theorem for martingales array (see e.g. [8]).

Theorem 4.1 Suppose that (Ω,F,P) is a probability space and that for each n, we have a
filtration Fn = (Fn

k )k≥0, a sequence kn −→ ∞ as n −→ ∞ and a real square integrable vector
martingale Mn = (Mn

k )k≥0 which is adapted to Fn and has quadratic variation denoted by
(〈M〉nk)k≥0. We make the following two assumptions.

A1. There exists a deterministic symmetric positive semi-definite matrix Γ , such that

〈M〉nkn =
kn∑
k=1

E
[
|Mn

k −Mn
k−1|2|Fn

k−1

] P−→
n→∞

Γ.

A2. Lindeberg’s condition holds: that is, for all ε > 0,

kn∑
k=1

E
[
|Mn

k −Mn
k−1|21{|Mn

k −Mn
k−1|>ε}|F

n
k−1

]
P−→

n→∞
0.

Then
Mn

kn

L−→ N (0, Γ ) as n→ ∞.

Remark. The following assumption known as the Lyapunov condition, implies the Linde-
berg’s condition A2.,

A3. There exists a real number a > 1, such that

kn∑
k=1

E
[
|Mn

k −Mn
k−1|2a|Fn

k−1

] P−→
n→∞

0.

As a prelude to the results of this subsection, we give a double indexed version of the Toeplitz
lemma that will be very helpful in the sequel.

18



Lemma 4.1 Let (ai)1≤i≤kn a sequence of real positive numbers, where kn ↑ ∞ as n tends to
infinity, and (xni )i≥1,n≥1 a double indexed sequence such that

(i) lim
n→∞

∑
1≤i≤kn ai = ∞

(ii) lim
i,n→∞

xni = lim
i→∞

( lim
n→∞

xni ) = lim
n→∞

( lim
i→∞

xni ) = x <∞

Then

lim
n→+∞

∑kn
i=1 aix

n
i∑kn

i=1 ai
= x.

Proof. For all ε > 0, there exists N1(ε) such that for all n ≥ N1(ε) and i ≥ N1(ε), we have
that:

|xni − x| ≤ ε

2
.

As kn goes to infinity, there exists N2(ε) such that for all n ≥ N2(ε), we have kn ≥ N1(ε).
Therefore, for all n ≥ sup(N1(ε), N2(ε)) = N(ε), we can write:

kn∑
i=1

ai|xni − x| =
N1(ε)−1∑
i=1

ai|xni − x|+
kn∑

i=N1(ε)

ai|xni − x|.

For the second term of the expression above, we have:

kn∑
i=N1(ε)

ai|xni − x| ≤ ε

2

kn∑
i=N1(ε)

ai ≤
ε

2

kn∑
i=1

ai.

On the other hand, by assumptions (i) and (ii) there exists Ñ(ε) such that for all n ≥ Ñ(ε)

sup1≤i≤N1(ε)−1 supn≥1 |xni − x|
∑

1≤i≤N1(ε)−1 ai∑
1≤i≤kn ai

≤ ε

2
.

Therefore, for all n ≥ Ñ(ε) ∣∣∣∣∣
∑kn

i=1 aix
n
i∑kn

i=1 ai
− x

∣∣∣∣∣ ≤ ε.

This completes the proof. �
Let B̃ = (Ω̃, F̃ , (F̃t)t≥0, P̃) be the extension probability space introduced in Section 2 en-

dowed with the filtration F̃T,i = σ(Wt,l, W̃t,l, l ≤ i, t ≤ T ) given in the very beginning of Section
3. In what follows, let (θni )i≥0, n ∈ N and (θi)i≥0 be a family of sequences satisfying

(Hθ)


For each n ∈ N, (θni )i≥0 and (θi)i≥0 are (F̃T,i)i≥0-adapted

lim
i→∞

( lim
n→∞

θni ) = lim
i→∞

θi = lim
n→∞

( lim
i→∞

θni ) = lim
n→∞

θ∗n = θ∗, P̃-a.s.,

with deterministic limits θ∗ and θ∗n.
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4.2 The adaptive Monte Carlo method

Let us recall that the statistical Romberg algorithm (25) runs successively two independent
empirical means. The first one is a crude Monte Carlo simply depending on the Euler scheme
with the coarse time step T/m. However, the second empirical mean involves the functional
difference between the fine Euler scheme with time step T/n and the coarse one constructed
from the same Brownian path. The task now is to prove a central limit theorem for the first
empirical mean.

Theorem 4.2 Let (θni )i≥0, n ∈ N and (θi)i≥0 be a family of sequences satisfying (Hθ). More-
over, assume that b and σ satisfy the global Lipschitz condition (Hb,σ) and the function ψ is a
real valued function satisfying assumption (Hεn), with α ∈ [1/2, 1] and Cψ ∈ R, such that

|ψ(x)− ψ(y)| ≤ C(1 + |x|p + |y|p)|x− y|, for some C, p > 0,

then the following convergence holds

nα

(
1

n2α

n2α∑
i=1

g(θni , X
n,θni
T,i+1,WT,i+1)− Eψ(XT )

)
L−→ N

(
Cψ, σ

2
)
.

where σ2 := E
(
ψ(XT )

2e−θ
∗.WT+ 1

2
|θ∗|2T

)
− [Eψ(XT )]

2 and for all x ∈ Rd and y ∈ Rq, g(θ, x, y) =

ψ(x)e−θ·y−
1
2
|θ|2T . Furthermore, we have also for all α, β > 0

nα

(
1

n2α

n2α∑
i=1

g(θn
β

i , X
nβ ,θn

β

i
T,i+1 ,WT,i+1)− Eψ(Xnβ

T )

)
L−→ N

(
0, σ2

)
.

Proof. At first, we rewrite the total error as follows

1

n2α

n2α∑
i=1

g(θni , X
n,θni
T,i+1,WT,i+1)− Eψ(XT ) =

1

n2α

n2α∑
i=1

(
g(θni , X

n,θni
T,i+1,WT,i+1)− Eg(θni , X

n,θni
T,i+1,WT,i+1)

)
+ Eψ(Xn

T )− Eψ(XT ).

Note that Ẽg(θni , X
n,θni
T,i+1,WT,i+1) = Ẽ

(
Ẽ
(
g(θni , X

n,θni
T,i+1,WT,i+1)|F̃T,i

))
= Eψ(Xn

T ). Assumption

(Hεn) ensures that nα(Eψ(Xn
T ) − Eψ(XT )) −→ Cψ as n → ∞. Consequently, it remains to

study the asymptotic behavior of the martingale array (Mn
k )k≥1 given by

Mn
k :=

1

nα

k∑
i=1

(
g(θni , X

n,θni
T,i+1,WT,i+1)− Eg(θni , X

n,θni
T,i+1,WT,i+1)

)
.

To do so, we split the proof into two steps devoted to apply the central limit theorem for
martingales array (see Theorem 4.1 and comments their).
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Step 1. We need first to study the asymptotic behavior of the quadratic variation of the
martingale array (Mn

k )k≥1 given by

〈M〉nn2α =
1

n2α

n2α∑
i=1

Ẽ
[(
g(θni , X

n,θni
T,i+1,WT,i+1)− Ẽg(θni , X

n,θni
T,i+1,WT,i+1)

)2
|F̃T,i

]
.

Since θni is F̃T,i-measurable and WT,i+1 ⊥⊥ F̃T,i, we obtain easily that

〈M〉nn2α =
1

n2α

n2α∑
i=1

νn(θ
n
i )− [Eψ(Xn

T )]
2 , (26)

where for all θ ∈ Rq

νn(θ) := E
(
ψ(Xn,θ

T )2e−2θ.WT−|θ|2T
)
= E

(
ψ(Xn

T )
2e−θ·WT+ 1

2
|θ|2T

)
.

It is clear that by assumption (Hεn), the last term on the right hand side of the relation
(26) converges to [Eψ(XT )]

2, as n tends to infinity. Concerning the first term, we introduce

ν(θ) := E
(
ψ(XT )

2e−θ·WT+ 1
2
|θ|2T

)
and we get for all θ ∈ Rq

|νn(θ)− ν(θ)| ≤ E
(∣∣ψ(Xn

T )
2 − ψ(XT )

2
∣∣ e−θ·WT+ 1

2
|θ|2T

)
≤ e

3
2
|θ|2T‖ψ(Xn

T )
2 − ψ(XT )

2‖2.

Under the condition on ψ together with property (P), there exists C > 0 such that

|νn(θ)− ν(θ)| ≤ C√
n
e

3
2
|θ|2T , ∀θ ∈ Rq.

By similar calculations, we check easily the equicontinuity of the family functions (νn)n≥1 and
we deduce thanks to property (Hθ)

lim
i,n→∞

νn(θ
n
i ) = ν(θ∗) P̃-a.s.

Therefore, Lemma 4.1 applies and we deduce that 〈M〉nn2α −→
n→∞

σ2.

Step 2. We will check now the Lyapunov condition, that is assumption A3., which implies
the Lindeberg condition A2. Let a > 1, we have

n2α∑
i=1

Ẽ
[
|Mn

i −Mn
i−1|2a|F̃T,i−1

]
=

1

n2aα

n2α∑
i=1

Ẽ
[∣∣∣g(θni , Xn,θni

T,i+1,WT,i+1)− Eψ(Xn
T )
∣∣∣2a |F̃T,i

]

≤ 22a−1

n2aα

n2α∑
i=1

νa,n(θ
n
i ) +

22a−1

n2α(a−1)
[Eψ(Xn

T )]
2a

where for all θ ∈ Rq, νa,n(θ) = E
(
ψ(Xn

T )
2ae−(2a−1)θ·WT−(a− 3

2
)|θ|2T

)
. Following the same argu-

ments detailed in the first step, we prove that

1

n2α

n2α∑
i=1

νa,n(θ
n
i ) −→

n→∞
νa(θ

∗) P̃-a.s.

where for all θ ∈ Rq, νa(θ) = E
(
ψ(XT )

2ae−(2a−1)θ·WT−(a− 3
2
)|θ|2T

)
. The second assertion is easily

obtained following the above proof with α, β > 0. This completes the proof. �

21



Remark. If one have in mind to reduce the variance by using an adaptive crude Monte Carlo
method, it appears clear that the natural choice is

θ∗ = argmin
θ∈Rq

Ẽ
(
g2(θ,XT )

)
and θ∗n = argmin

θ∈Rq
Ẽ
(
g2(θ,Xn

T )
)
for n ≥ 1.

Under suitable conditions on ψ, b and σ, one can of course construct sequences (θni )i≥0, n ∈
N and (θi)i≥0 satisfying (Hθ) by either the constrained or the unconstrained Robbins-Monro
algorithm.

4.3 The adaptive statistical Romberg method

As we pointed out at the beginning of the above subsection, the statistical Romberg algorithm
(25) consists of two empirical means. So our task now is to study the asymptotic behavior of
the second one in view to establish a central limit theorem for the method.

Theorem 4.3 Let (θni )i≥0, n ∈ N and (θi)i≥0 be a family of sequences satisfying (Hθ). More-
over, assume that b and σ are C1 functions satisfying the global Lipschitz condition (Hb,σ) and
ψ is a real valued function satisfying assumptions (Hψ), (Hεn), with constants α ∈ (1/2, 1] and
Cψ ∈ R, such that

|ψ(x)− ψ(y)| ≤ C(1 + |x|p + |y|p)|x− y|, for some C, p > 0.

If we choose N1 = n2α, N2 = n2α−β and m = nβ, 0 < β < 1 then the statistical Romberg
algorithm denoted by Vn in (25) satisfies

nα (Vn − Eψ(XT ))
L−→ N

(
Cψ, σ

2 + σ̃2
)

as n→ ∞,

where σ2 = E
[
ψ(XT )

2e−θ
∗·WT+ 1

2
|θ∗|2T

]
− [Eψ(XT )]

2 , σ̃2 := Ẽ
[
[∇ψ(XT ) · UT ]2 e−θ

∗·WT+ 1
2
|θ∗|2T

]
and U is the process introduced from the beginning by relation (3).

Proof. First of all, note that we can rewrite the normalized total error as follows

nα (Vn − Eψ(XT )) := An1 + An2

with An1 := nα
(
Vn − Eψ(Xnβ

T )− E[ψ(Xn
T )− ψ(Xnβ

T )]
)
, and An2 := nα (E[ψ(Xn

T )− ψ(XT )]) .

So, assumption (Hεn) yields the convergence of the second term An2 towards the discretization
constant Cψ, as n tends to infinity. The first term An1 can be also rewritten as follows An1 :=
An1,1 + An1,2, where

An1,1 :=
1

nα

n2α∑
i=1

(
g(θ̂n

β

i , X̂
nβ ,θ̂n

β

i
T,i+1 ,WT,i+1)− Eψ(Xnβ

T )

)
,

An1,2 :=
1

nα−β

n2α−β∑
i=1

(
g(θni , X

n,θni
T,i+1,WT,i+1)− g(θni , X

nβ ,θni
T,i+1 ,WT,i+1)− E[ψ(Xn

T )− ψ(Xnβ

T )]
)
.
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Using the independence between An1,1 and A
n
1,2, we study separately their asymptotic behavior.

Concerning the first term, the second assertion in Theorem 4.2 applies and gives the asymptotic
normality of An1,1,

An1,1
L−→ N

(
0, σ2

)
, as n→ ∞. (27)

Now, concerning the second term An1,2 we introduce the martingale arrays (Mn
k )k≥1

Mn
k :=

1

nα−β

k∑
i=1

(
g(θni , X

n,θni
T,i+1,WT,i+1)− g(θni , X

nβ ,θni
T,i+1 ,WT,i+1)− E[ψ(Xn

T )− ψ(Xnβ

T )]
)
,

in view to apply Theorem 4.1. To do so, we will verify both assumptions A1. and A3. in the
following two steps.
•Step 1. The quadratic variation of M evaluated at n2α−β is given by

〈M〉nn2α−β =
1

n2α−β

n2α−β∑
i=1

nβξn(θ
n
i )−

(
n

β
2 [Eψ(Xn

T )− Eψ(Xnβ

T )]
)2
, (28)

where ∀θ ∈ Rq, ξn(θ) := E
(
[ψ(Xn

T )− ψ(Xnβ

T )]2e−θ·WT+ 1
2
|θ|2T

)
. Now, assumption (Hεn) with

1/2 < α ≤ 1 ensures that the second term on the right hand side of relation (28) vanishes as
n tends to infinity. We focus now on the asymptotic behavior of nβξn(θ). Under assumption
(Hψ), we apply the Taylor expansion theorem twice to get for all θ ∈ Rq

n
β
2 [ψ(Xn

T )− ψ(Xnβ

T )]e−
1
2
θ·WT+ 1

4
|θ|2T = n

β
2∇ψ(XT ) · [Xn

T −Xnβ

T ]e−
1
2
θ·WT+ 1

4
|θ|2T +Rn,

where
Rn := n

β
2 (Xn

T −XT )ε(XT , X
n
T −XT )− n

β
2 (Xnβ

T −XT )ε(XT , X
nβ

T −XT )

with ε(XT , X
n
T −XT )

P-a.s.−→ 0 and ε(XT , X
nβ

T −XT )
P-a.s.−→ 0 as n→ ∞, since the global Lipschitz

condition (Hb,σ) is satisfied. Further, as b and σ are C1 functions then according to Theorem 3.2

in [11] we have the tightness of n
β
2 (Xn

T−XT ) and n
β
2 (Xnβ

T −XT ) and we deduce the convergence
in probability of the remaining term Rn to zero as n tends to infinity. Once again, by the same
theorem in [11], we get for all θ ∈ Rq

n
β
2 [ψ(Xn

T )− ψ(Xnβ

T )]e−
1
2
θ·WT+ 1

4
|θ|2T stably

=⇒ ∇ψ(XT ) · UT e−
1
2
θ·WT+ 1

4
|θ|2T . (29)

Otherwise, ∀θ ∈ Rq and a′ > 1 we have by Cauchy-Schwarz inequality

E
∣∣∣nβ

2 [ψ(Xn
T )− ψ(Xnβ

T )]e−
1
2
θ·WT+ 1

4
|θ|2T

∣∣∣2a′ ≤ nβa
′
[
E
∣∣∣ψ(Xn

T )− ψ(Xnβ

T )
∣∣∣4a′] 1

2

e
a′(2a′+1)

2
|θ|2T .

Thanks to the assumption on ψ together with property (P), we obtain

sup
n

E
∣∣∣nβ

2 [ψ(Xn
T )− ψ(Xnβ

T )]e−
1
2
θ·WT+ 1

4
|θ|2T

∣∣∣2a′ <∞. (30)
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Hence, by the stable convergence obtained in (29) and the uniform integrability property given
by (30) we deduce ∀θ ∈ Rq

lim
n→∞

nβξn(θ) = Ẽ
(
[∇ψ(XT ) · UT ]2 e−θ·WT+ 1

2
|θ|2T

)
:= ξ(θ). (31)

Using property (P) with assumption on ψ, it is easy to check by standard evaluations the
equicontinuity of the family functions (nβξn)n≥1. So under assumption (Hθ), we get

lim
i,n→∞

nβξn(θ
n
i ) = ξ(θ∗) P̃-a.s.

Then, Lemma 4.1 yields limn→∞〈M〉n
n2α−β = ξ(θ∗), P̃-a.s.

•Step 2. The second step consists on checking Lyapunov assumption A3. Let a > 1,

n2α−β∑
i=1

Ẽ
[
|Mn

i −Mn
i−1|2a|F̃T,i−1

]
≤ 22a−1

na(2α−β)

n2α−β∑
i=1

nβaξa,n(θ
n
i )+

22a−1nβa

n(2α−β)(a−1)
|Eψ(Xn

T )−Eψ(Xnβ

T )|2a

where for all θ ∈ Rq, ξa,n(θ) := E
(
|ψ(Xn

T )− ψ(Xnβ

T )|2ae−(2a−1)θ·WT−(a− 3
2
)|θ|2T

)
. Miming the

same arguments used in the first step, we prove under assumption (Hθ) using relations (29)
and Lemma 4.1, that

1

n2α−β

n2α−β∑
i=1

nβaξa,n(θ
n
i ) −→

n→∞
ξa(θ

∗) := Ẽ
(
|∇ψ(XT ) · UT |2ae−(2a−1)θ·WT−(a− 3

2
)|θ|2T

)
, P̃-a.s.

Consequently, since a > 1, we conclude using assumption (Hεn) that A3. holds. This gives the

asymptotic normality of An1,2,2 so that we have An1,2
L−→ N (0, σ̃2), as n → ∞. This completes

the proof. �

Remark. We recall that for the adaptive statistical Romberg method the optimal choice of
θ∗ and θ∗n is given respectively by relations (7) and (8). According to Corollary 3.2 (resp.
Corollary 3.4), the sequences (θni )i≥0, n ∈ N and (θi)i≥0 obtained by the constrained Robbins-
Monro algorithm (resp. the unconstrained Robbins-Monro algorithm) satisfy (Hθ) under some
regularity conditions on ψ, b and σ.

Complexity analysis According to the main theorems of this section, we deduce that for a
total error of order 1/nα, α ∈ (1/2, 1], the minimal computational effort necessary to run the
adaptive statistical Romberg algorithm is obtained for N1 = n2α, N2 = n2α−β and m = nβ.
This leads to a time complexity given by CSR = C × (n2α+β + (n+ nβ)n2α−β), with C > 0. So
the time complexity reaches its minimum for the optimal choice of β = 1/2. Hence, the optimal
parameters to run the method are given by m =

√
n, N1 = n2α and N2 = n2α−1/2. Then the

optimal complexity of the adaptive statistical Romberg algorithm is given by CSR ' C×n2α+ 1
2 .

However, for the same error of order 1/nα, the optimal complexity of the adaptive Monte Carlo
algorithm is given by CMC = C×(N×n) = C×n2α+1.We conclude that the adaptive statistical
Romberg method is more efficient in terms of time complexity.
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5 Numerical results for the Heston model

Stochastic volatility models are increasingly important in practical derivatives pricing appli-
cations. In this section we show, throughout the problem of option pricing with a stochastic
volatility model, the efficiency of the importance sampling statistical Romberg method com-
pared to the importance sampling Monte Carlo one. The popular stochastic volatility model
in finance is the Heston model introduced by Heston in [10] as solution to{

dSt = rStdt+
√
VtStdW

1
t

dVt = κ(v̄ − Vt)dt+ σ
√
VtρdW

1
t + σ

√
Vt
√

1− ρ2dW 2
t ,

where W 1 and W 2 are two independent Brownian motions. Parameters κ, σ, v̄ and r are
strictly positive constants and |ρ| ≤ 1. In this model, κ is the rate at which Vt reverts to v̄, v̄
is the long run average price variance, σ is the volatility of the variance, r is the interest rate
and ρ is a correlation term.

Our aim is to use the importance sampling method in order to reduce the variance when
computing the price of an European call option, with strike K, under the Heston model. The
payoff of the option is ψ(ST ) = (ST − K)+. Then, the price is e−rTEψ(ST ). After a density
transformation, given by Girsanov theorem, the price will be defined by:

e−rTE
[
g(θ, SθT )

]
= e−rTE

[
ψ(SθT ) e−θ.WT− 1

2
|θ|2T

]
, θ ∈ R2.

For more details on definitions of the function g and SθT , see relation (5) and related results
given in the same page. To approximate SθT , we consider the step T/n and we discretize the
stochastic process using the Euler scheme. For i ∈ J0, n− 1K and θ = (θ1, θ2) ∈ R2,

Sn,θti+1
= Sn,θti

(
1 + (r + θ1

√
V n,θ
ti )

T

n
+

√
V n,θ
ti

T

n
Z1,i+1

)
,

V n,θ
ti+1

=

∣∣∣∣∣V n,θ
ti +

(
κ(v̄ − V n,θ

ti ) + σ

√
V n,θ
ti (ρθ1 +

√
1− ρ2θ2)

)
T

n
+ σ

√
V n,θ
ti

T

n
Z2,i+1

∣∣∣∣∣ ,
with (Z1,i, Z2,i)1≤i≤n is a sequence of a standard Gaussian random vectors taking values in R2.
Hence, the price of the European call option is firstly approximated by

e−rTE
[
g(θ, Sn,θT )

]
= e−rTE

[
ψ(Sn,θT ) e−θ.WT− 1

2
|θ|2T

]
, θ ∈ R2.

The choice of θ depends on using the classical Monte Carlo method or the statistical Romberg
one. The optimal θ for the first method is given by

θ∗n = argmin
θ∈R2

E
[
ψ2(Sn,θT ) e−2θ.WT−|θ|2T

]
.

However, The optimal θ for the second one is

θ̃∗n = argmin
θ∈R2

E
[(
ψ2(Sn,θT ) + (∇ψ(Sn,θT ).Un,θ

T )2
)
e−2θ.WT−|θ|2T

]
,

where Un,θ denotes the Euler discretization scheme obtained when we replace coefficients b and
σ of relation (9) by the corresponding parameters in the Heston model. Here, we have also the
choice of the algorithm approximating both θ∗n and θ̃∗n. We can use either the constrained or
the unconstrained stochastic algorithms studied in section 3 above.
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• Approximation of θ∗n by

i. Constrained algorithm: let (Ki)i∈N denote an increasing sequence of compact sets satisfying

∪∞
i=0 Ki = Rd and Ki (

◦
Ki+1, ∀i ∈ N. For θn0 ∈ K0, α

n
0 = 0 and a gain sequence (γi)i∈N

satisfying (12), we define the sequence (θni , α
n
i )i∈N recursively by

if θni − γi+1H(θni , S
n
T,i+1, U

n
T,i+1,WT,i+1) ∈ Kαn

i
, then

θni+1 = θni − γi+1H(θni , S
n
T,i+1, U

n
T,i+1,WT,i+1), and α

n
i+1 = αni

else θni+1 = θn0 and αni+1 = αni + 1,
(32)

where H(θni , S
n
T,i+1,WT,i) = (θni T −WT,i+1) ψ2(SnT,i+1) e−θ

n
i .WT,i+1+

1
2
|θni |2T .

ii. Unconstrained algorithm : θni+1 = θni −γi+1(2θ
n
i T −WT,i+1)ψ

2(S
n,−θni
T,i+1 )e

−η|θni |2T , with η > 0.

• Approximation of θ̃∗n by

i. Constrained algorithm: we use the same routine (32) with

H(θni , S
n
T,i+1,WT,i) = (θni T −WT,i+1)

(
ψ2(SnT,i+1) + (∇ψ(SnT,i+1).U

n
T,i+1)

2
)
e−θ

n
i .WT,i+1+

1
2
|θni |2T .

ii. Unconstrained algorithm: we use the routine

θni+1 = θni − γi+1(2θ
n
i T −WT,i+1)

(
ψ2(S

n,−θni
T,i+1 ) + (∇ψ(Sn,−θ

n
i

T,i+1 ) · U
n
T,i+1)

2
)
e−η|θ

n
i |2T .

To compare these different routines we run a number of iterations M = 500 000. The
parameters in the Heston model are chosen as follows: S0 = 100, V0 = 0.01, K = 100, the free
interest rate r = log(1.1), σ = 0.2, k = 2, v̄ = 0.01, ρ = 0.5 and maturity time T = 1. Table 1
gives the obtained values of the two-dimensional vectors θ∗n and θ̃∗n.

Constrained algorithm Unconstrained algorithm
θ∗n (0.7906, 0.0516) (0.7904, 0.0532)

θ̃∗n (0.7884, 0.0587) (0.7898, 0.0576)

Table 1: Estimation of θ∗n and θ̃∗n

In Figure 1, we test the robustness of both routines, for the computation of θ̃∗n, using the
averaged algorithm “à la Ruppert & Poliak” (see e.g. [19]) known to give optimal rate for
convergence. We implement this averaged algorithm using both constrained and unconstrained
procedures. So, we proceed as follows,

i. first, we choose a slowly decreasing step: γi = γ0/i
α, for α ∈ (1

2
, 1) and γ0 > 0.

ii. Then, we compute the empirical mean of all the previous observations,

θ̄ni+1 :=
1

i+ 1

i∑
k=0

θ̃nk .
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Figure 1: Values of (θ̄ni )1≤i≤M obtained with n = 100, γ0 = 0.01 and α = 0.75.

The left curve (resp. the right curve) is the representation, for 1 ≤ i ≤ M , of the first
component (resp. the second component) of the two-dimensional vector θ̄ni . The trajectories
obtained using the constrained or the unconstrained algorithm are comparable. Consequently,
since we did not notice any major difference between the two methods we have chosen to only
use the constrained algorithm for approximating θ∗n (resp. θ̃∗n) by θnM (resp θ̃nM). Our aim
now, is to compare both importance sampling Monte Carlo method (denoted by MC+IS) and
importance sampling statistical Romberg (denoted by SR+IS).

- MC+IS method: European call option price approximation with N = n2

e−rT

N

N∑
i=1

g(θnM , S
n,θnM
T,i+1) =

e−rT

N

N∑
i=1

ψ(S
n,θnM
T,i+1)e

−θnM .WT,i+1− 1
2
|θnM |2T . (33)

- SR+IS method: European call option price approximation method with N1 = n2 and
N2 = n

3
2

e−rT

N1

N1∑
i=1

g(θ̃nM , Ŝ
√
n,θ̃nM

T,i+1 ) +
e−rT

N2

N2∑
i=1

(
g(θ̃nM , S

n,θ̃nM
T,i+1)− g(θ̃nM , S

√
n,θ̃nM

T,i+1 )
)
. (34)

The first method (33) is already implemented and available in the free online version of Premia
platform (https://www.rocq.inria.fr/mathfi/Premia/index.html) and our method (34) is
now added in the latest premium version. In Table 2 (resp. Table 3), we compare for each given
number of time step n, the obtained call price (resp. the sensitivity call price parameter ∆)
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with the corresponding length of the 95%-confidence interval and the CPU time (per second)
for both methods (33) and (34). It is worth to note that the number of time step n needed to
achieve a given accuracy depends on the choice of the method.

Method n Price Confidence time
Interval length

MC+IS
400 9.641444 0.060094 10.38
900 9.661192 0.029409 91.5
1600 9.656892 0.016538 512.29

SR+IS
600 9.659409 0.057454 3.36
1600 9.660062 0.019933 26.79
3600 9.65673 0.008584 194.6

Table 2: Call Price for the Heston model

Method n Price Confidence time
Interval length

MC+IS
400 0.863968 0.00721 9.39
900 0.863291 0.003151 91.58
1600 0.863766 0.001774 515.31

SR+IS
600 0.867441 0, 007249 3.27
1600 0.864213 0.002541 27.02
3600 0.862589 0.001095 202.2

Table 3: Delta call price for the Heston model

We also compare both methods (33) and (34) for a large range of time step numbers n.
Then, we make a simple log-log scale plot of CPU time versus the corresponding 95%-confidence
interval length. Computations are done on a PC with a 2.5 GHz Intel core i5 processor. In
Figure 2 the line marked by circles denotes the MC+IS method and the line marked by squares
denotes the SR+IS method. The values mentioned near the points correspond to the chosen
number of steps n. Clearly, the SR+IS curve is lower than the MC+IS one, which means that
the MC+IS method spends more time than the SR+IS method to achieve the same given error
when computing the option price. For example for an error of 0.06, the SR+IS method reduces
time by a factor of 3.33 compared to a MC+IS one. Note that, the more the imposed error
is small, the better improvement is. For example for a small error 0.02, the time reduction
exceeds a factor of 10.

6 Conclusion

In this paper we highlight the efficiency of the new algorithm that we propose namely the
adaptive statistical Romberg method. A natural question is to produce an analogous study
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proving the the efficiency of importance sampling routines when used together with the so-
called Multilevel Monte Carlo method. This latter method introduced by Giles in [9] reduces
the complexity of the Monte Carlo Euler scheme procedure to the order of n2 log n. Proving a
central limit theorem on the adaptive multilevel Monte Carlo algorithm does not seem to be
immediate. In fact, this task requires a thorough study and will be the object of a forthcoming
work.
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Figure 2: CPU time versus the 95%-confidence interval length

APPENDIX: PROOF OF THEOREM 2.1

Let θ ∈ Rq. First, for U θ given by (6) we have to prove that sup0≤t≤T |U θ
t | is in Lp. Using the

integral form of the process, if F 1
t , t ∈ [0, T ], denotes the associated first term on the right-hand

side of (6), then by the Hölder inequality and the boundedness of ḃ, σ̇j, {1, · · · , q}, there is
c1 > 0 such that

E sup
0≤s≤t

|F 1
s |p ≤ E

(∫ t

0

(
|ḃ(Xθ

s )|+
q∑
j=1

|θj||σ̇j(Xθ
s )|
)
|U θ

s |
)p
ds ≤ c1

∫ t

0

E|U θ
s |pds. (35)

If F 2
t , t ∈ [0, T ], denotes the second term on the right-hand side of (6), then by Burkholder-

Davis-Gundy’s inequality there exists a constant Cp > 0 depending on p such that

E sup
0≤s≤t

|F 2
s |p ≤ qp−1

q∑
j=1

E sup
0≤s≤t

∣∣∣∫ s

0

σ̇j(X
θ
v )U

θ
vdW

j
v

∣∣∣p≤ qp−1Cp

q∑
j=1

E
(∫ t

0

|σ̇j(Xθ
s )|2|U θ

s |2ds
)p/2

.
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Thanks to the Hölder inequality and the boundedness of σ̇, there is a constant c2 > 0 such that

E sup
0≤s≤t

|F 2
s |p ≤ c2

∫ t

0

E|U θ
s |pds. (36)

Now, if F 3
t , t ∈ [0, T ], denotes the third term on the right-hand side of (6) then using the same

arguments as above together with the linear growth assumption on σ and property (P) we get
the existence of c3 > 0 such that

E sup
0≤s≤t

|F 3
s |p ≤

q2p−2

2p/2

q∑
j,`=1

E
(∫ t

0

|σ̇j(Xθ
s )|2|σ`(Xθ

s )|2ds
)p/2

≤ c3. (37)

So (35), (36), (37), and the inequality (a+ b+ c)p ≤ 3p−1(ap + bp + cp) tell us that there exists
A and B depending on b, σ, θ, p, q and T such that

E sup
0≤s≤t

|U θ
s |p ≤ A+B

∫ t

0

E sup
0≤v≤s

|U θ
v |pds.

Hence Gronwall’s lemma yields E sup0≤s≤t |U θ
s |p ≤ AeBt for all t ∈ [0, T ] (see e.g. [5] page 269).

Now, the same proof holds for Un,θ, where the constants obtained in the corresponding upper
bound do not depend on the parameter n. Hence, we obtain the first assertion of the theorem
namely sup0≤s≤T |U θ

t | and sup0≤s≤T |U
n,θ
t | are in Lp, p ≥ 1.

We now proceed to control the quantity E sup0≤s≤t |U θ
s − Un,θ

s |p and we write

U θ
t − Un,θ

t = G1
t +G2

t +G3
t , for all t ∈ [0, T ],

with G1 is the drift term, G2 is the sum of the stochastic integrals terms with respect to the
Brownian motion W and G3 is the sum of the stochastic integrals terms with respect to the
Brownian motion W̃ . Concerning the first term G1, we write it as follows

G1
t =

∫ t

0

(
ḃ(Xθ

s ) +

q∑
j=1

θjσ̇j(X
θ
s )
)
(U θ

s −Un,θ
s )ds+

∫ t

0

(
ḃ(Xθ

s ) +

q∑
j=1

θjσ̇j(X
θ
s )
)
(Un,θ

s −Un,θ
ηn(s)

)ds

+

∫ t

0

(
ḃ(Xθ

s )− ḃ(Xn,θ
ηn(s)

) +

q∑
j=1

θj
(
σ̇j(X

θ
s )− σ̇j(X

n,θ
ηn(s)

)
))
Un,θ
ηn(s)

dt. (38)

If G1,1
t , t ∈ [0, T ], denotes the first term on the right-hand side of (38), then by the Hölder

inequality and the boundedness of ḃ, σ̇, there is a constant c4 > 0 such that

E sup
0≤s≤t

|G1,1
s |p ≤ c4

∫ t

0

E sup
0≤v≤s

|U θ
v − Un,θ

v |pds. (39)

If G1,2
t , t ∈ [0, T ], denotes the second term on the right-hand side of (38), then by the same

arguments, there is a constant c5 > 0 such that

E sup
0≤s≤t

|G1,2
s |p ≤ c5

∫ T

0

E|U θ
t − Un,θ

ηn(t)
|pdt.
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Noticing that

Un,θ
t − Un,θ

ηn(t)
=
(
ḃ(Xn,θ

ηn(t)
) +

q∑
j=1

θjσ̇j(X
n,θ
ηn(t)

)
)
Un,θ
ηn(t)

(t− ηn(t))

+

q∑
j=1

σ̇j(X
n,θ
ηn(t)

)Un,θ
ηn(t)

(W j
t −W j

ηn(t)
)− 1√

2

q∑
j,`=1

σ̇j(X
n,θ
ηn(t)

)σ`(X
n,θ
ηn(t)

)(W̃ `j
t − W̃ `j

ηn(t)
),

we get thanks to the Cauchy-Schwarz inequality and the boundedness of ḃ, σ̇, the existence of
a constant c6 > 0 such that

E|Un,θ
t − Un,θ

ηn(t)
|p ≤ c6

(
E|Un,θ

ηn(t)
|p(t− ηn(t))

p

+

q∑
j=1

(
E|Un,θ

ηn(t)
|2p
) 1

2
(
E|W j

t −W j
ηn(t)

|2p
) 1

2 +

q∑
j,`=1

(
E|σ`(Xn,θ

ηn(t)
)|2p
) 1

2
(
E|W̃ `j

t − W̃ `j
ηn(t)

|2p
) 1

2

)
.

Since E|W j
t − W j

ηn(t)
|2p = E|W̃ `j

t − W̃ `j
ηn(t)

|2p = (t − ηn(t))
p 2p!
2p(p)!

and sup0≤s≤T |X
n,θ
t | and

sup0≤s≤T |U
n,θ
t | are in L2p , we use the linear growth of σ to deduce the existence of a con-

stant c7 > 0 such that

E sup
0≤s≤t

|G1,2
s |p ≤ c7

np/2
. (40)

If G1,3
t , t ∈ [0, T ], denotes the third term on the right-hand side of (38), then using the Lipschitz

property on ḃ, σ̇, and the Cauchy-Schwarz inequality, we deduce the existence of a constant
c8 > 0 such that

E sup
0≤s≤t

|G1,3
s |p ≤ c8

(
E sup

0≤t≤T
|Xθ

t −Xn,θ
ηn(t)

|2p
) 1

2
(
E sup

0≤t≤T
|Un,θ

ηn(t)
|2p
) 1

2 .

Now using property (P), the proposition in page 274 of [5] and sup0≤s≤T |U
n,θ
t | ∈ L2p, we deduce

the existence of a constant c9 > 0 such that

E sup
0≤s≤t

|G1,3
s |p ≤ c9

np/2
. (41)

So (39), (40), (41) tell us that there exists A1 and B1 depending on b, σ, θ, p, q and T such
that

E sup
0≤s≤t

|G1
s|p ≤

A1

np/2
+B1

∫ t

0

E sup
0≤v≤s

|U θ
v − Un,θ

v |pds. (42)

Concerning the second term G2, using Burkholder-Davis-Gundy’s inequality followed by the
Hölder’s one we get the existence of a constant c10 > 0 such that

E sup
0≤s≤t

|G2
s|p ≤ c10

q∑
j=1

∫ t

0

E
∣∣σ̇j(Xθ

s )U
θ
s − σ̇j(X

n,θ
ηn(s)

)Un,θ
ηn(s)

∣∣pds.
The expectation term inside the above integral is bounded up to a multiplicative constant by

E
∣∣σ̇j(Xθ

s )(U
θ
s − Un,θ

s )
∣∣p + E

∣∣σ̇j(Xθ
s )(U

n,θ
s − Un,θ

ηn(s)
)
∣∣p + E

∣∣(σ̇j(Xθ
s )− σ̇j(X

n,θ
ηn(s)

)
)
Un,θ
ηn(s)

∣∣p.
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The same evaluations used to get relation (42) allow us to handle separately the three terms
above. Hence, we deduce in the same manner that there exists A2 and B2 depending on b, σ,
θ, p, q and T such that

E sup
0≤s≤t

|G2
s|p ≤

A2

np/2
+B2

∫ t

0

E sup
0≤v≤s

|U θ
v − Un,θ

v |pds. (43)

Concerning the third term G3, we apply the same arguments again to get the existence of a
constant c11 > 0 such that

E sup
0≤s≤t

|G3
s|p ≤ c11

q∑
j,`=1

E sup
0≤s≤t

∣∣∣σ̇j(Xθ
s )σ`(X

θ
s )− σ̇j(X

n,θ
ηn(s)

)σ`(X
n,θ
ηn(s)

)
∣∣∣p.

It follows that the expectation term in the above sum is bounded by

E sup
0≤s≤t

∣∣∣σ̇j(Xθ
s )σ`(X

θ
s )−σ̇j(Xθ

ηn(s))σ`(X
θ
ηn(s))

∣∣∣p+E sup
0≤s≤t

∣∣∣σ̇j(Xθ
ηn(s))σ`(X

θ
ηn(s))−σ̇j(X

n,θ
ηn(s)

)σ`(X
n,θ
ηn(s)

)
∣∣∣p.

Since σ is a Lipschitz continuous function with linear growth and σ̇ is a Lipschitz continuous
bounded function, we use again the proposition in page 274 of [5] (respectively property (P)
) to get a control on the first term (respectively on the second term) of the above expression.
Hence, there exists a positive constant A3 depending on σ, θ, p, q and T such that

E sup
0≤s≤t

|G3
s|p ≤

A3

np/2
. (44)

Finally putting together relations (42), (43) and (44), we complete the proof by using the
Gronwall lemma. �
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