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Nonergodic Square-Root Diffusions
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Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539),
Villetaneuse, France

This article deals with the problem of global parameter estimation in the
Cox-Ingersoll-Ross (CIR) model �Xt�t≥0. This model is frequently used in finance
for example, to model the evolution of short-term interest rates or as a dynamic of
the volatility in the Heston model. In continuity with a recent work by Ben Alaya
and Kebaier [1], we establish new asymptotic results on the maximum likelihood
estimator (MLE) associated to the global estimation of the drift parameters of
�Xt�t≥0. To do so, we need to study the asymptotic behavior of the quadruplet
�logXt� Xt�

∫ t

0 Xsds�
∫ t

0
ds
Xs
�. This allows us to obtain various and original limit

theorems on our MLE, with different rates and different types of limit distributions.
Our results are obtained for both cases: ergodic and nonergodic diffusion.

Keywords Cox-Ingersoll-Ross processes; Laplace transform; Limit theorems;
Nonergodic diffusion; Parameter inference.

Mathematics Subject Classification 44A10; 60F05; 62F12.

1. Introduction

The Cox-Ingersoll-Ross (CIR) process is widely used in mathematical finance to
model the evolution of short-term interest rates. It is also used in the valuation
of interest rate derivatives. It was introduced by Cox et al. [2] as solution to the
stochastic differential equation (SDE)

dXt = �a− bXt�dt +
√
2��Xt�dWt� (1)
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Statistical Inference for Square-Root Behavior 553

where X0 = x > 0, a > 0, b ∈ �, � > 0 and �Wt�t≥0 is a standard Brownian motion.
Under the above assumption on the parameters that we will suppose valid
throughout this article, this SDE has a unique non-negative strong solution �Xt�t≥0

(see Ikeda and Watanabe [8, p. 221]). In the particular case b = 0 and � = 2, we
recover the square of a a-dimensional Bessel process starting at x. For extensive
studies on Bessel processes we refer to Revuz and Yor [18] and Pitman and Yor
[16] and [17]. The behavior of the CIR process X mainly depends on the sign of
b. Indeed, in the case b > 0 there exists a unique stationary distribution, say �,
of X and the stationary CIR processes enjoy the ergodic property that is: for all
h ∈ L1���, 1

t

∫ t

0 h�Xs�ds converges almost surely to
∫
� h�x���dx�. In the case a ≥ �,

the CIR process X stays strictly positive; for 0 < a < �, it hits 0 with probability
p ∈�0� 1� if b < 0 and almost surely if b ≥ 0, the state 0 is instantaneously reflecting
(see, e.g., [6] for more details).

During the past decades, inference for diffusion models has become one of
the core areas in statistical sciences. The basic results concerning the problem of
estimating the drift parameters when a diffusion process was observed continuously
are well summarized in the books by Lipster and Shiryayev [13] and Kutoyants
[11]. This approach is rather theoretical, since the real data are discrete time
observations. Nevertheless, if the error due to discretization is negligible then the
statistical results obtained for the continuous time model are valid for discrete
time observations too. Most of these results concern the case of ergodic diffusions
with coefficients satisfying the Lipschitz and linearity growth conditions. In the
literature, only few results can be found for nonergodic diffusions or diffusions
with nonregular coefficients such as the CIR. To our knowledge, one of the first
articles having studied the problem of global parameter estimation in the CIR model
is that of Fournié and Talay [4]. They have obtained a nice explicit formula of
the maximum likelihood estimator (MLE) of the drift parameters � 	= �a� b� and
have established its asymptotic normality only in the case b > 0 and a > � by
using the classical martingale central limit theorem. Otherwise, for cases b ≤ 0 or
a ≤ � this argument is no more valid. Note that, in practice, the parameter � is
usually assumed to be known and one can estimate it separately using the quadratic
variation of the process X. Afterward, Overbeck [14] considers the CIR model in
the context of a continuous branching process with immigration rate a > 0 (CBI)
and he gives more detailed results by including singular subdomains. By establishing
all three properties LAN (local asymptotic normality), LAMN (local asymptotic
mixed normality), and LAQ (local asymptotic quadraticity), he obtains consistency
and asymptotic normality for the MLE for different submodels. Simultaneously,
Overbeck and Ryden [15] examine the same problem from the discrete point of view.

In a recent work, Ben Alaya and Kebaier [1] use a new approach based on
Laplace transform technics to study the asymptotic behavior of the MLE associated
to one of the drift parameters in the CIR model, given that the other one is known,
for a range of values �a� b� �� covering ergodic and nonergodic situations. More
precisely, they prove that

• First case: when a is supposed to be known the MLE of � = b is given by

b̂T = aT + x − XT∫ T

0 Xsds



D
ow

nl
oa

de
d 

by
 [

U
ni

v 
Pa

ri
s-

N
or

d-
B

 U
 S

ci
en

ce
s]

, [
A

hm
ed

 K
eb

ai
er

] 
at

 2
3:

58
 1

9 
Ju

ne
 2

01
3 



554 Ben Alaya and Kebaier

If b > 0, the asymptotic theorem on the error b̂T − b is obtained with a rate
equal to

√
T and the limit distribution is Gaussian. However, for b < 0 and

b = 0, when the diffusion �Xt�t≥0 is not ergodic, the rate of convergence are
respectively equal to e−bT/2 and T and the obtained limit distributions are not
guassians (for more details see of [1, Theorem 1])

• Second case: when b is supposed to be known, the MLE of � = a, given by

âT = logXT − log x + bT + �
∫ T

0
ds
Xs∫ T

0
ds
Xs

�

is well defined only for a ≥ �. When a > �, the asymptotic theorem on the
error âT − a is obtained with a rate equal to

√
T if b > 0 and with a rate

equal to
√
log T if b = 0 and the limit distribution is Gaussian in both cases.

When a = �, the asymptotic theorem on the error âT − a is obtained with
a rate equal to T if b > 0 and with a rate equal to log T if b = 0 and the
corresponding limit distributions are not guassians. However, for the case b <
0 the MLE estimator âT is not consistent (for more details, see [1, Theorem
2]). Note that for the case b ≤ 0, when the diffusion �Xt�t≥0 is not ergodic, and
even in the case b > 0 and a = �, when the diffision is ergodic, the quantity
1
t

∫ t

0
1
Xs
ds goes to infinity as t tends to infinity and consequently the classical

technics based on central limt theorem for martingales fail.

In order to pove the first case results, Ben Alaya and Kebaier [1] use the explicit
Laplace transform of the couple �XT �

∫ T

0 Xsds� which is well known (see, e.g. [12,
p. 127]), in view to study its asymptotic behavior (see Theorem 1). However, for

the second case, they only use the explicit Laplace transform of
∫ T

0
ds
Xs

based on a
recent work of Craddock and Lennox [3] to deduce its asymptotic behavior too
(see Theorem 3).

The aim of this article is to study the global MLE estimator of parameter � =
�a� b� for a range of values �a� b� �� covering ergodic and nonergodic situations.
Indeed, it turns out that the MLE of � = �a� b� is defined only when a ≥ � and the
associated estimation error is given by

�̂T − � =


âT − a =

(
logXT − log x + �� − a�

∫ T

0
ds
Xs

) ∫ T

0 Xsds − T �XT − x − aT�∫ T

0
ds
Xs

∫ T

0 Xsds − T 2

b̂T − b =
T
(
logXT − log x + bT + �

∫ T

0
ds
Xs

)
−
(
XT − x + b

∫ T

0 Xsds
) ∫ T

0
ds
Xs∫ T

0
ds
Xs

∫ T

0 Xsds − T 2



Hence, the results obtained by [1] are no longer sufficient for our proposed
study, since we need a precise description of the asymptotic behavior of the

quadruplet �logXT�XT �
∫ T

0 Xsds�
∫ T

0
ds
Xs
� appearing in the above error estimation. For

this purpose, we use once again the recent work of [3]. The obtained results are
stated in Section 2.

Then in the Section 3, we take advantage of this study to establish new
asymptotic theorems on the error estimation �̂T − � with different rates of
convergence and different types of limit distributions that vary according to
assumptions made on the parameters a, b and �. More precisely, we prove that
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Statistical Inference for Square-Root Behavior 555

when a > �, the asymptotic theorem on the error �̂T − � is obtained with a rate
equal to

√
T if b > 0 and with a rate equal to diag�

√
log T� T� if b = 0 and the limit

distribution is Gaussian only for the first case. When a = �, the asymptotic theorem
on the error �̂T − � is obtained with a rate equal to diag�T�

√
T� if b > 0 and with a

rate equal to diag�log T� T� if b = 0 and the corresponding limit distributions are not
guassians. For b < 0 the MLE estimator �̂T is not consistent. Our results cover both
cases : ergodic and nonergodic situations and are summarized in Theorems 5–7.

In the last section, we study the problem of parameter estimation from discrete
observations. These observations consist of a discrete sample �Xtk

�0≤k≤n of the
CIR diffusion at deterministic and equidistant instants �tk = k�n�0≤k≤n. Our aim
is to study a new estimator �̂

�n
tn

	= �â
�n
tn
� b̂

�n
tn
�, for � = �a� b� based on discrete

observations, under the conditions of high frequency, �n → 0, and infinite horizon,
n�n → �. Several authors have studied this estimation problem by basing the
inference on a discretization of the continuous likelihood ratio, see [5, 19]. In our
approach, we proceed in a slightly different way, we discretize the continuous time
MLE instead of considering the maximum argument of the discretized likelihood.
We give sufficient conditions on the stepsize �n under which the error �̂

�n
tn

− �̂tn
correctly normalized tends to zero, so that the limit theorems obtained in the
continuous time observations for �̂tn can be easily carried out for the discrete one
�
�n
tn
. It turns out that, for a > 2�, these limit theorems are satisfied if n2�n → 0,

when b > 0, or max
(
n2�n�

n�
3
2
n

log�n�n�

)
→ 0� when b = 0 (see Theorems 8 and 9). The

case 0 ≤ a ≤ 2�, seems to be much more harder to treat and requires a specific and
more detailed analysis. For b > 0, the condition n2�n → 0 is consistent with those
of articles in the litterature dealing with the same problem for ergodic diffusions
with regular coefficients (see [19, and references therein]). However, for b = 0, the

condition max
(
n2�n�

n�
3
2
n

log�n�n�

)
→ 0 seems to be quite original since it concerns a

nonergodic case.

2. Asymptotic Behavior of the Triplet �Xt�
∫ t

0 Xsds�
∫ t

0
ds
Xs
)

Let us recall that �Xt�t≥0 denotes a CIR process solution to (1). It is relevant to
consider separately the cases b = 0 and b �= 0, since the process �Xt�t≥0 behaves
differently.

2.1. Case b = 0

In this section, we consider the Cox-Ingersoll-Ross CIR process �Xt�t≥0 with b = 0.
In this particular case, �Xt�t≥0 satisfies the SDE

dXt = adt +√2�XtdWt
 (2)

Note that for � = 2, we recover the square of a a-dimensional Bessel process starting
at x and denoted by BESQa

x. This process has been attracting considerably the
attention of several studies (see [18]). Recently, Ben Alaya and Kebaier study the
seperate asymptotic behavior of �Xt�

∫ t

0 Xsds� and
∫ t

0
ds
Xs

(see [1, Propositions 1 and
2]) and prove the following result.
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556 Ben Alaya and Kebaier

Theorem 1. Let �Xt�t≥0 be a CIR process solution to (2), we have

1. �Xt

t
� 1
t2

∫ t

0 Xsds�
law−→ �R1� I1� as t tends to infinity, where �Rt�t≥0 is the CIR process

starting from 0, solution to (2) and It =
∫ t

0 Rsds.
2. �x

( ∫ t

0
ds
Xs

< �) = 1 if and only if a ≥ �.

3. If a > � then 1
log t

∫ t

0
ds
Xs

�−→ 1
a−�

as t tends to infinity.

4. If a = � then 1
�log t�2

∫ t

0
ds
Xs

law−→ �1 as t tends to infinity, where �1 is the hitting time
associated with Brownian motion �1 	= inf

{
t > 0 	 Wt = 1√

2�

}
.

In the following, we study the asymptotic behavior of the triplet �Xt�
∫ t

0
Xsds�

∫ t

0
ds
Xs
� which makes sense only and olny if a ≥ � and we prove the following

result.

Theorem 2. Let �Xt�t≥0 be a CIR process solution to (2), we have

1. If a > � then(
Xt

t
�
1
t2

∫ t

0
Xsds�

1
log t

∫ t

0

ds

Xs

)
law−→
(
R1� I1�

1
a− �

)
as t tends to infinity


2. If a = � then(
Xt

t
�
1
t2

∫ t

0
Xsds�

1
�log t�2

∫ t

0

ds

Xs

)
law−→ �R1� I1� �1� as t tends to infinity


Here, �Rt�t≥0 denotes the CIR process starting from 0, solution to (2), It =
∫ t

0 Rsds,
and �1 is the hitting time associated with Brownian motion �1 	= inf

{
t > 0 	 Wt = 1√

2�

}
.

Moreover, the couple �R1� I1� and the random time �1 are independent.

In order to prove this proposition, we choose to compute the Laplace transform
of the quadruplet �logXt� Xt�

∫ t

0 Xsds�
∫ t

0
ds
Xs
�. Here is the obtained result.

Proposition 1. For 
 ≥ 0� � ≥ 0, � > 0 and � ∈�− k− �
2 − 1

2 �+��, we have

�x

(
X

�
t e

−
Xt−�
∫ t
0 Xsds−�

∫ t
0

ds
Xs

)
= ���+ k+ �

2 + 1
2 �

���+ 1�
x� exp

(
−
√
��x

�
coth�

√
��t�

)

×
( √

��x

� sinh�
√
��t�

) �
2+ 1

2−k−� (
�
√
�
/

√
�� sinh�

√
��t�+ cosh�

√
��t�

)− �
2− 1

2−k−�

× 1F1

�+ k+ �

2
+ 1

2
� �+ 1�

√
��x

� sinh�
√
��t�

(
�
√
�
/

√
�� sinh�

√
��t�+ cosh�

√
��t�

)
 �

(3)
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Statistical Inference for Square-Root Behavior 557

where k = a
2� , � = 1

�

√
�a− ��2 + 4�� and 1F1 is the confluent hypergeometric function

defined by 1F1�u� v� z� =
∑�

n=0
un
vn

zn

n! , with u0 = v0 = 1, and for n ≥ 1, un =
∏n−1

k=0�u+ k�

and vn =
∏n−1

k=0�v+ k�.

Consequently, the Laplace transform of the triplet �Xt�
∫ t

0 Xsds�
∫ t

0
ds
Xs
� is

obtained by taking � = 0 in relation (3) and we have the following result.

Corollary 1. For 
 ≥ 0� � ≥ 0 and � > 0, we have

�x

(
e−
Xt−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs

)
= ��k+ �

2 + 1
2 �

���+ 1�
exp

(
−
√
��x

�
coth�

√
��t�

)

×
( √

��x

� sinh�
√
��t�

) �
2+ 1

2−k (
�
√
�
/

√
�� sinh�

√
��t�+ cosh�

√
��t�

)− �
2− 1

2−k

× 1F1

k+ �

2
+ 1

2
� �+ 1�

√
��x

� sinh�
√
��t�

(
�
√
�
/

√
�� sinh�

√
��t�+ cosh�

√
��t�

)
 �

(4)

where k = a
2� , � = 1

�

√
�a− ��2 + 4��.

Proof of Proposition 1. We apply Theorem 5.10 of [3] to our process. We have
just to be careful with the misprint in formula (5.24) of [3]. More precisely, we
have to replace

√
Axy, in the numerator of the first term in the right-hand side

of this formula, by
√
Ax/y. Hence, for a > 0 and � > 0, we obtain the so called

fundamental solution of the PDE ut = �xuxx + aux − � �
x
+ �x�u� � > 0� � > 0:

p�t� x� y� =
√
��

� sinh�
√
��t�

(y
x

)k−1/2
exp

(
−

√
���x + y�

� tanh�
√
��t�

)
I�

(
2
√
��

√
xy

� sinh�
√
��t�

)
� (5)

where I� is the modified Bessel function of the first kind. This yields the Laplace
transform of the quadruplet �logXt� Xt�

∫ t

0 Xsds�
∫ t

0
ds
Xs
�, since

�x

(
X�

t e
−
Xt−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs

)
=
∫ �

0
y�e−
yp�t� x� y�dy


Evaluation of this integral is routine, see [7, Formula 2 of Section 6.643]. Therefore,
we get

�x

(
X�

t e
−
Xt−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs

)
= ���+ k+ �

2 + 1
2 �

���+ 1�
x−k exp

(
−
√
��x

�
coth�

√
��t�

)
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558 Ben Alaya and Kebaier

×
 � sinh�

√
��t�√

��
(
�
√
�
/

√
�� sinh�

√
��t�+ cosh�

√
��t�

)
�+k

× exp

 √
��x

2� sinh�
√
��t�

(
�
√
�
/

√
�� sinh�

√
��t�+ cosh�

√
��t�

)


×M−�−k� �2

 √
��x

� sinh�
√
��t�

(
�
√
�
/

√
�� sinh�

√
��t�+ cosh�

√
��t�

)
 � (6)

where Ms�r�z� is the Whittaker function of the first kind given by

Ms�r�z� = zr+
1
2 e−

z
2
1F1�r − s + 1

2
� 2r + 1� z�
 (7)

See [7] for more details about those special functions. We complete the proof by
inserting relation (7) in (6). �

Proof of Theorem 2. The first assertion is straightforward from Theorem 1. For the
last assertion and under notations ofthe above corollary, it is easy to check that

lim
t→��x

(
e
− 


t Xt− �

t2

∫ t
0 Xsds− �

�logt�2

∫ t
0

ds
Xs

)
= lim

t→�

exp
( √

�√
� log t log

( √
��x

t� sinh�
√
���

))
�
√
�
/

√
�� sinh�

√
���+ cosh�

√
���

=
exp
(√

�√
�

)
�
√
�
/

√
�� sinh�

√
���+ cosh�

√
���

= �x

(
e−
R1−�I1

)
�x �e

−��1� 


Which completes the proof. �

We now turn to the case b �= 0.

2.2. Case b �= 0

Let us resume the general model of the CIR given by relation (1) with b �= 0, namely

dXt = �a− bXt�dt +
√
2�XtdWt� (8)

where X0 = x > 0, a > 0, b ∈ �∗, � > 0. Note that this process may be represented
in terms of a square Bessel process through the relation Xt = e−btY

(
�
2b �e

bt − 1�
)
,

where Y denotes a BESQ
2a
�
x . This relation results from simple properties of square

Bessel processes (see, e.g., [6, 18]). In the same manner as for the case b = 0, Ben
Alaya and Kebaier study the seperate asymptotic behavior of �Xt�

∫ t

0 Xsds� and
∫ t

0
ds
Xs

(see [1, Propositions 3 and 4]) and prove the following result.
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Statistical Inference for Square-Root Behavior 559

Theorem 3. Let �Xt�t≥0 be a CIR process solution to (8), we have

1. If b > 0 then 1
t

∫ t

0 Xsds
�−→ a

b
as t tends to infinity.

2. If b < 0 then
(
ebtXt� e

bt
∫ t

0 Xsds
) law−→ (

Rt0
� t0Rt0

)
, as t tends to infinity, where t0 =

−1/b and �Rt�t≥0 is the CIR process, starting from x, solution to (2).

3. �x

(∫ t

0
ds
Xs

< �
)
= 1 if and only if a ≥ �.

4. If b > 0 and a > � then 1
t

∫ t

0
ds
Xs

�−→ b
a−�

as t tends to infinity.

5. If b > 0 and a = � then 1
t2

∫ t

0
ds
Xs

law−→ �2 as t tends to infinity, where �2 is the hitting
time associated with Brownian motion �2 	= inf�t > 0 	 Wt = b

�
√
2
�.

6. If b < 0 and a ≥ � then
∫ t

0
ds
Xs

law−→ It0 	=
∫ t0
0 Rsds as t tends to infinity, where t0 =

−1/b and �Rt�t≥0 is the CIR process, starting from x, solution to (2).

According to the third assertion of the above theorem our next result makes
sense if and only if a ≥ � and we have.

Theorem 4. Let �Xt�t≥0 be a CIR process solution to (8), we have

1. If b > 0 and a > � then
(

1
t

∫ t

0 Xsds�
1
t

∫ t

0
ds
Xs

)
�−→ (

a
b
� b
a−�

)
as t tends to infinity.

2. If b > 0 and a = � then
(

1
t

∫ t

0 Xsds�
1
t2

∫ t

0
ds
Xs

)
law−→ (

a
b
� �2
)
as t tends to infinity, where

�2 is the hitting time associated with Brownian motion �2 	= inf�t > 0 	 Wt = b√
2�
�.

3. If b < 0 and a ≥ � then
(
ebtXt� e

bt
∫ t

0 Xsds�
∫ t

0
ds
Xs

)
law−→ (

Rt0
� t0Rt0

� It0
)
, as t tends to

infinity, where t0 = −1/b, �Rt�t≥0 is the CIR process, starting from x solution to (2),
and It0 	=

∫ t0
0 Rsds.

Proof of Theorem. The two first assertions are straightforward consequence from
Theorem 3. For the case b < 0 and a ≥ �, we have only to note that �

∫ t

0
ds
Xs
�t≥0 is an

increasing process converging to a random variable with the same law as It0 . The
result follows by [1, Assertion 2 of Proposition 3]. �

Nevertheless, the above theorem is not sufficient to prove all the asymptotic
results we manage to establish in our next section. Therefore, we need to prove in
extra the following result.

Proposition 2. For 
 ≥ 0� � ≥ 0 and � > 0, we have

�x

(
e−
Xt−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs

)
= ��k+ �

2 + 1
2 �

���+ 1�
exp
(

b

2�
�at + x�− Ax

2�
coth�At/2�

)

×
(

Ax

2� sinh�At/2�

) �
2+ 1

2−k (2�
+ b

A
sinh�At/2�+ cosh�At/2�

)− �
2− 1

2−k

× 1F1

(
k+ �

2
+ 1

2
� �+ 1�

A2x

2� sinh�At/2� ��2�
+ b� sinh�At/2�+ A cosh�At/2��

)
� (9)

where k = a
2� , A = √

b2 + 4�� and � = 1
�

√
�a− ��2 + 4��.
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560 Ben Alaya and Kebaier

Proof. We apply Theorem 5.10 of [3], for b �= 0. We obtain the fundamental
solution of the PDE ut = �xuxx + �a− bx�ux − ��x + �

x
�u, � > 0 and � > 0:

p�t� x� y� = A

2� sinh�At/2�

(y
x

)a/�2��−1/2

× exp
(

b

2�
�at + �x − y��− A�x + y�

2� tanh�At/2�

)
I�

(
A
√
xy

� sinh�At/2�

)

 (10)

Since �x

(
e−
Xt−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs

)
= ∫ �

0 e−
yp�t� x� y�dy, we deduce the Laplace

transform of the triplet �Xt�
∫ t

0 Xsds�
∫ t

0
ds
Xs
�. In the same manner as in the proof of

[7, Proposition 3, Formula 2 of Section 6.643] gives us

�x

(
e−
Xt−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs

)
= ��k+ �

2 + 1
2 �

���+ 1�
x−k exp

(
b

2�
�at + x�− Ax

2�
coth�At/2�

)
×
(

2� sinh�At/2�
�2�
+ b� sinh�At/2�+ A cosh�At/2�

)k

× exp
(

A2x

4� sinh�At/2� ��2�
+ b� sinh�At/2�+ A cosh�At/2��

)
×M−k� �2

(
A2x

2� sinh�At/2� ��2�
+ b� sinh�At/2�+ A cosh�At/2��

)

 (11)

Finally, by inserting relation (7) in (11) we obtain the announced result. �

3. Estimation of the CIR Diffusion from Continuous Observations

Let us first recall some basic notions on the construction of the maximum likelihood
estimator (MLE). Suppose that the one dimensional diffusion process �Xt�t≥0

satisfies

dXt = b���Xt�dt + ��Xt�dWt� X0 = x0�

where the parameter � ∈ � ⊂ �p, p ≥ 1, is to be estimated. The coefficients b and �
are two functions satisfying conditions that guarantee the existence and uniqueness
of the SDE for each � ∈ �. We denote by �� the probability measure induced by the
solution of the equation on the canonical space C��+��� with the natural filtration
�t 	= ��Ws� s ≤ t�, and let ���t 	= ����t be the restriction of �� to �t. If the integrals
in the next formula below make sense then the measures ���t and ��0�t

, for any
�� �0 ∈ �� t > 0, are equivalent (see [9, 13]) and we are able to introduce the so called
likelihood ratio

L
���0
t 	= d���t

d��0�t

= exp
{∫ t

0

b���Xs�− b��0� Xs�

�2�Xs�
dXs −

1
2

∫ t

0

b2��� Xs�− b2��0� Xs�

�2�Xs�
ds

}



(12)

The process �L���0
t �t≥0 is an �t−martingale.
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Statistical Inference for Square-Root Behavior 561

In the present section, we observe the process XT = �Xt�0≤t≤T as a parametric
model solution to Equation (1), namely,

dXt = �a− bXt�dt +
√
2�XtdWt�

where X0 = x > 0, a > 0, b ∈ �, � > 0. The unknown parameter, say �, is involved
only in the drift part of the diffusion and we consider the case � = �a� b�.

3.1. Parameter Estimation � = �a� b�

According to relation (12), the appropriate likelihood ratio, evaluated at time T with
�0 = �a0� 0� for a fixed a0 ≥ �, makes sense when ���

∫ T

0
ds
Xs

< �� = 1 and is given by

LT��� = LT�a� b� 	= L
���0
T

= exp
{

1
2�

∫ T

0

a− a0 − bXs

Xs

dXs −
1
4�

∫ T

0

�a− bXs�
2 − a2

0

Xs

ds

}



Hence, for a ≥ �, the MLE �̂T = �âT � b̂T � of � = �a� b� that maximizes LT�a� b� is
well defined and we have

âT =
∫ T

0 Xsds
∫ T

0
dXs

Xs
− T�XT − x�∫ T

0
ds
Xs

∫ T

0 Xsds − T 2

b̂T = T
∫ T

0
dXs

Xs
− �XT − x�

∫ T

0
ds
Xs∫ T

0
ds
Xs

∫ T

0 Xsds − T 2

Hence, the error is given by
âT − a = √

2�

∫ T

0 Xsds
∫ T

0
dWs√
Xs

− T
∫ T

0

√
XsdWs∫ T

0
ds
Xs

∫ T

0 Xsds − T 2

b̂T − b = √
2�

T
∫ T

0
dWs√
Xs

− ∫ T

0
ds
Xs

∫ T

0

√
XsdWs∫ T

0
ds
Xs

∫ T

0 Xsds − T 2

The above error is obviously of the form

�̂T − � = √
2��M�−1

T MT � with MT =
( ∫ T

0
dWs√
Xs

− ∫ T

0

√
XsdWs

)
(13)

and ��M�t�t≥0 is the quadratic variation of the Brownian martingale �Mt�t≥0. If this
quadratic variation, correctly normalized, converges in probability then the classical
martingale central limit theorem can be applied. Here and in the following 
⇒
means the convergence in distribution under ��.
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562 Ben Alaya and Kebaier

Theorem 5. For the case b > 0 and a > �

��

{√
T
(
�̂T − �

)}

⇒ ��2

(
0� 2�C−1

)
� with C =

(
b

a−�
−1

−1 a
b

)



Proof. Since for a > � and b > 0 the CIR process is ergodic and the stationary
distribution is a Gamma law with shape a/� and scale �/b, the ergodic theorem
yields

lim
T→�

1
T

∫ T

0
Xsds =

a

b
� lim

T→�
1
T

∫ T

0

ds

Xs

= b

a− �
and lim

T→�
�M�T
T

= C �� a
s



Therefore, by the martingale central limit theorem we get ��

{
1√
T
MT

} 
⇒ ��2�0� C�

We complete the proof using identity (13). �

In the following, it is relevant to rewrite, using Itô’s formula, the MLE error as
follows

âT − a =
(
logXT − log x + �� − a�

∫ T

0
ds
Xs

) ∫ T

0 Xsds − T �XT − x − aT�∫ T

0
ds
Xs

∫ T

0 Xsds − T 2

b̂T − b =
T
(
logXT − log x + bT + �

∫ T

0
ds
Xs

)
−
(
XT − x + b

∫ T

0 Xsds
) ∫ T

0
ds
Xs∫ T

0
ds
Xs

∫ T

0 Xsds − T 2



(14)

Consequently, the study of the vector �XT �
∫ T

0 Xs�
∫ T

0
ds
Xs
�, done in the previous

section, will be very helpful to investigate the limit law of the error. The asymptotic
behavior of �̂T − � can be summarized as follows.

Theorem 6. The MLE of � = �a� b� is well defined for a ≥ � and satisfies

1. Case b = 0 and a = � 	 ��

{
diag�log T� T���̂T − ��

}
⇒ (
1
�1
� a−R1

I1

)
, where �Rt� is

the CIR process, starting from 0, solution to (2), It =
∫ t

0 Rsds, and �1 is the hitting
time associated with Brownian motion �1 = inf�t > 0 	 Wt = 1√

2�
�. The couple

�R1� I1� and the random time �1 are independent.
2. Case b = 0 and a > � : ��

{
diag�

√
log T� T���̂T − ��

}
⇒ (√
2��a− ��G� a−R1

I1

)
,

where �R1� I1� is defined in the previous case, G is a standard normal random
variable indepedent of �R1� I1�.

Proof. For the case b = 0 and a = �

diag�log T� T���̂T − �� =



logXT−log x
log T ×

(
1
T 2

∫ T

0 Xsds
)
− XT−x−aT

T log T(
1

�log T�2

∫ T

0
ds
Xs

)
×
(

1
T 2

∫ T

0 Xsds
)
− 1

�log T�2

logXT−log x
�log T�2 + a

�log T�2

∫ T

0
ds
Xs

− XT−x

T
×
(

1
�log T�2

∫ T

0
ds
Xs

)
(

1
�log T�2

∫ T

0
ds
Xs

)
×
(

1
T 2

∫ T

0 Xsds
)
− 1

�log T�2
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Statistical Inference for Square-Root Behavior 563

By a scaling argument the process �X2t/a� has the same distribution as a
bidimensional square Bessel process, starting from x, BESQ2

x. It follows that

X2T/a
law= �BT + x�2 law= T�B1 + x/

√
T�2�

where �Bt�t≥0 denotes a standard bidimensional Brownian motion. Hence,
logXT/ log T converges in law to one and consequently in probability. We complete
the proof of the first case using the second assertion of Theorem 2. For the case
b = 0 and a > �, we have

diag�
√
log T� T���̂T − �� =



logXT−log x+��−a�
∫ T
0

ds
Xs√

log T
×
(

1
T 2

∫ T

0 Xsds
)
− XT−x−aT

T
√

log T(
1

log T

∫ T

0
ds
Xs

)
×
(

1
T 2

∫ T

0 Xsds
)
− 1

log T

logXT−log x+�
∫ T
0

ds
Xs

log T − XT−x

T
×
(

1
log T

∫ T

0
ds
Xs

)
(

1
log T

∫ T

0
ds
Xs

)
×
(

1
T 2

∫ T

0 Xsds
)
− 1

log T




Note that for any u ∈ �, v > 0 and w > 0 we have

�x

(
exp

[
u
logXT + �� − a�

∫ T

0
ds
Xs√

log T
− v

T 2

∫ T

0
Xsds −

w

T
XT

])

= �x

(
X�

t exp
[
−
XT − �

∫ T

0
Xsds − �

∫ T

0

ds

Xs

])

with � = u√
log T

, 
 = w
T
, � = v

T 2 and � = u�a−��√
log T

. The moment generating-Laplace

transform in the right hand side of the above equality is given by relation (3) of
Proposition 1 . Consequently, using standard evaluations, it is easy to prove that
the limit of the last quantity, when T tends to infinity, is equal to

( √
�v

�w sinh�
√
�v�+√

�� cosh�
√
�v�

) a
�

× lim
T→+�

exp

[
− log T

(
1
2�

√
�a− ��2 + 4u��a− ��√

log T
+ � − a

2�
− u√

log T

)]

=
( √

�v

�w sinh�
√
�v�+√

�� cosh�
√
�v�

) a
�

exp
( �

a− �
u2
)



It follows that(
logXT + �� − a�

∫ T

0
ds
Xs√

log T
�
1
T 2

∫ T

0
Xsds�

XT

T

)
law−→
(√

2�
a− �

G� I1� R1

)
as T tends to infinity
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564 Ben Alaya and Kebaier

We complete the proof of the second assertion using that 1
log T

∫ T

0
ds
Xs

�−→ 1
a−�

(see

the first assertion of Theorem 2) and that logXT

log T

�−→ 1, which is a starightforward

consequence of the above result, namely: XT

T

law−→ R1
 �

Theorem 7. The MLE of � = �a� b� is well defined for a ≥ � and satisfies

1. Case b > 0 and a = � : ��

{
diag�T�

√
T���̂T − ��

}
⇒ (
b
�2
�
√
2bG

)
, where G is a

standard normal random variable indepedent of �2 the hitting time associated with
Brownian motion �2 = inf�t > 0 	 Wt = b√

2�
�.

2. Case b < 0 and a ≥ �: the MLE estimator �̂T is not consistent.

Proof. For the first case, we have

diag�T�
√
T���̂T − �� =



logXT−log x
T

×
(

1
T

∫ T

0 Xsds
)
− XT−x−aT

T(
1
T 2

∫ T

0
ds
Xs

)
×
(

1
T

∫ T

0 Xsds
)
− 1

T

logXT−log x+bT

T
√
T

− XT−x−aT+b
∫ T
0 Xsds√

T
×
(

1
T 2

∫ T

0
ds
Xs

)
(

1
T 2

∫ T

0
ds
Xs

)
×
(

1
T

∫ T

0 Xsds
)
− 1

T

At first, note that the term XT

T
appearing in the first component of the above relation

vanishes as T tends to infinity. This is straightforward by combining that

XT

T
= x + a

T
− b

T

∫ T

0
Xs ds +

√
2a
T

∫ T

0

√
Xs dWs�

with the classical large law number property for continuous martingales which

applies here, since 1
T

∫ T

0 Xsds
�−→ a

b
(see Assertion 2 of Theorem 4). Now, note that

for any u ∈ � and v > 0, we have

�x

(
exp

[
u
XT − aT + b

∫ T

0 Xsds√
T

− v

T 2

∫ T

0

ds

Xs

])

= e−au
√
T�x

(
exp
[
−
XT − �

∫ T

0
Xsds − �

∫ T

0

ds

Xs

])
with 
 = − u√

T
, � = − ub√

T
and � = v

T 2 . The moment generating-Laplace transform in
the right hand side of the above equality is given by relation (9) of Proposition 2
with a = �. Using standard evaluations, it is easy to prove that the limit of the last
quantity, when T tends to infinity, is equal to

lim
T→�

1
2
exp
(
bT

2
− au

√
T

)(
sinh

(
T

2

√
b2 − 4aub√

T

))− 2
√
v

T
√
�
−1
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Statistical Inference for Square-Root Behavior 565

= lim
T→�

exp
(
bT

2
− au

√
T

)
exp

((
− 2

√
v

T
√
�
− 1
)(

T

2

√
b2 − 4aub√

T

))

= exp
(
�2u2

b
− b

√
u√
�

)

Hence, the couple
(

XT−aT+b
∫ T
0 Xsds√

T
� 1
T 2

∫ T

0
ds
Xs

)
converges in law to

(√
2
b
�G� �2

)
when

T tends to infinity. On the other hand, using that the CIR process �Xt� can be
represented in terms of a BESQ2

x as follows

XT

law= e−bTBESQ2
x

(
a

2b
�ebT − 1�

)

and that log BESQ2
x�T�/ log T converges in probability to one, we obtain that

�logXT − log x + bT�/T converges in probability to b and consequently we deduce
logXT

T

�−→ 0
 We complete the proof of the first assertion using that 1
T

∫ T

0 Xsds
�−→ a

b

(see assertion 2 of Theorem 4).
For the second case, b < 0 and a ≥ �, we have

âT − a = √
2�

∫ T

0 Xsds
∫ T

0
dWs√
Xs

− T
∫ T

0

√
XsdWs∫ T

0
ds
Xs

∫ T

0 Xsds − T 2

= √
2�

∫ T

0
dWs√
Xs

− TebT
∫ T
0
√
XsdWs

ebT
∫ T
0 Xsds∫ T

0
ds
Xs

− T 2ebT

ebT
∫ T
0 Xsds




Since
(∫ t

0
ds
Xs

)
t≥0

is an increasing process converging to a finite random variable, we

easily deduce the almost sure convergence of the Brownian martingale
(∫ t

0
dWs√
Xs

)
t≥0

.

Thanks to the convergence in law of the term ebT
∫ T

0 Xsds, we finish the proof using
that

T 2e2bT�
(∫ T

0

√
XsdWs

)2

= T 2e2bT
∫ T

0
��Xs�ds = T 2e2bT

∫ T

0

(
a

b
+
(
x − a

b

)
e−bs

)
ds −→

T→�
0


�

4. Estimation of the CIR Diffusion from Discrete Observations

In this section, we consider rather a discrete sample �Xtk
�0≤k≤n of the CIR diffusion

at deterministic and equidistant instants �tk = k�n�0≤k≤n. Our aim is to study a new
estimator for � = �a� b� based on discrete observations, under the conditions of high
frequency, �n → 0, and infinite horizon, n�n → �. A common way to do that is to
consider a discretization of the logarithm likelihood (see [10, and references there]).
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566 Ben Alaya and Kebaier

In our case this method yields the contrast

1
2�

n−1∑
k=0

a− bXtk

Xtk

�Xtk+1
− Xtk

�− 1
4�

n−1∑
k=0

�n

�a− bXtk
�2

Xtk

�

Our approach is slightly different since we discretize the continuous time MLE,
obtained in the previous section, instead of considering the maximum argument of
the above contrast. Doing so, we take advantage from limit theorems obtained in
the continuous time observations. Hence, thanks to relation (14), the discretized
version of the MLE is given by

â
�n
tn

=
(
logXtn

− log x + �
∑n−1

k=0
�n

Xtk

)∑n−1
k=0 �nXtk

− tn
(
Xtn

− x
)

∑n−1
k=0

�n

Xtk

∑n−1
k=0 �nXtk

− t2n

b̂
�n
tn

=
tn

(
logXtn

− log x + �
∑n−1

k=0
�n

Xtk

)
− (Xtn

− x
)∑n−1

k=0
�n

Xtk∑n−1
k=0

�n

Xtk

∑n−1
k=0 �nXtk

− t2n



(15)

In order to prove limit theorems on the discrete estimator, �̂�n
tn

	= �â
�n
tn
� b̂

�n
tn
�, we need

to control the errors
∫ tn
0 Xsds −

∑n−1
k=0 �nXtk

and
∫ tn
0

ds
Xs

−∑n−1
k=0

�n

Xtk

and some moments
behavior on the increments of the CIR process are needed.

4.1. Moment Properties of the CIR Process

Let us first, yield some essential properties on moments of the CIR process.

Proposition 3. For all � ∈�− a
�
�+�� we have

1. For b = 0, we have

�x�X
�
t �∼��

�� a
�
+ ��

�� a
�
�

t�� as t → +��

and we have, sup0≤t≤1 �x�X
�
t � < � and supt≥1

�x�X
�
t �

t�
< �


2. For b > 0, we have

�x�X
�
t �∼

(
�2

2b

)�
�� a

�
+ ��

�� a
�
�

� as t → +��

and we have, supt≥0 �x�X
�
t � < �


Proof. For the first assertion we take 
 = � = 0 and let � tend to 0 in relation (3)
of Proposition 1, it follows that

�x�X
�
t � = ��t��

�� a
�
+ ��

�� a
�
�

exp
(
− x

�t

)
1F1

(a
�
+ ��

a

�
�
x

�t

)
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Statistical Inference for Square-Root Behavior 567

and we get the result using that

lim
t→� 1F1

(a
�
+ ��

a

�
�
x

�t

)
= 1


The second assertion is immediate using the previous assertion and that, for b > 0,
we have the relation Xt = e−btY

(
�
2b �e

bt − 1�
)
� where Y denotes a BESQ

2a
�
x . As the

function t �→ �x�X
�
t � is continuous we obtain the last result. �

In the following, C denotes a positive constant that may change from line to
line.

Proposition 4. In the case b > 0, let 0 ≤ s < t such that 0 < t − s < 1 we have

1. For all q ≥ 1,

�x�Xt − Xs�q ≤ C�t − s�
q
2 


2. For all a > 2�,

�x

∣∣∣∣ 1Xt

− 1
Xs

∣∣∣∣ ≤ C�t − s�
1
2 


Proof. First, note that by linearization technics we obtain

d�ebtXt� = aebtdt + ebt
√
2�XtdWt
 (16)

Hence,

Xt − Xs =
(a
b
− Xs

) (
1− e−b�t−s�

)+ ∫ t

s
e−b�t−u�

√
2�XudWu


Let q ≥ 1,

�x�Xt − Xs�q ≤ 2q−1
(
1− e−b�t−s�

)q
�x

∣∣∣a
b
− Xs

∣∣∣q + 2q−1�x

∣∣∣∣∫ t

s
e−b�t−u�

√
2�XudWu

∣∣∣∣q 

The first term in the right-hand side is bounded by C�t − s�q since 1− e−x ≤ x,
for x ≥ 0, and supt≥0 �x�X

q
t � < � (see Proposition 3). For the second term, the

Burkholder-Davis-Gundy inequality yields

�x

(∫ t

s
e−b�t−u�

√
2�XudWu

)q

≤ �x

(∫ t

s
2�e−2b�t−u�Xudu

) q
2

For q ≥ 2, we apply the Hölder inequality on the integral to obtain

�x

(∫ t

s
e−b�t−u�

√
2�XudWu

)q

≤ C�t − s�
q
2−1
∫ t

s
e−bq�t−u��x�X

q
2
u � du

≤ C�t − s�
q
2 �
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568 Ben Alaya and Kebaier

since the integrand is bounded using supu≥0 �x�X
q
2
u � < �. For 1 ≤ q < 2, we apply

the Hölder inequality on the expectation and we obtain

�x

(∫ t

s
e−b�t−u�

√
2�XudWu

)q

≤
(∫ t

s
2�e−2b�t−u��x�Xu�du

) q
2

≤ C�t − s�
q
2 �

since the integrand is also bounded using once again supu≥0 �x�Xu� < �. Combining
these three upper bounds with 0 < t − s < 1, we deduce the first assertion.
Concerning the second assertion, we use the Hölder inequality with 1

q
+ 2

p
= 1 and

2 < p < a
�
which ensures the boundedness of all the terms. We obtain

�x

∣∣∣∣ 1Xt

− 1
Xs

∣∣∣∣ ≤ �Xt − Xs�q
∥∥X−1

t

∥∥
p

∥∥X−1
s

∥∥
p
≤ C�t − s�

1
2 �

since by Proposition 3 we have supt≥0 �x�X
−p
t � < �, for p < a

�
, and �x�Xt − Xs�q ≤

C�t − s�
q
2 , for q ≥ 2. �

Proposition 5. In the case b = 0, let 0 ≤ s < t such that 0 < t − s < 1 we have

1. For all q ≥ 2,

�x�Xt − Xs�q ≤ C�t − s�
q
2 sup
s≤u≤t

�x�X
q
2
u �


2. For all 1 ≤ q < 2,

�x�Xt − Xs�q ≤ C�at + x�
q
2 �t − s�

q
2 


3. For all a > 2�, there exists q ≥ 2 and 2 < p < a
�
, such that

�x

∣∣∣∣ 1Xt

− 1
Xs

∣∣∣∣ ≤ C�t − s�
1
2 sup
s≤u≤t

(
�x�X

q
2
u �
) 1

q ∥∥X−1
t

∥∥
p

∥∥X−1
s

∥∥
p



Proof. First, we have

Xt − Xs = a�t − s�+
∫ t

s

√
2�XudWu


Let q ≥ 1,

�x�Xt − Xs�q ≤ 2q−1 �a�t − s��q + 2q−1�x

∣∣∣∣∫ t

s

√
2�XudWu

∣∣∣∣q 

For the second term, the Burkholder-Davis-Gundy inequality yields

�x

(∫ t

s

√
2�XudWu

)q

≤ �x

(∫ t

s
2�Xudu

) q
2
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Statistical Inference for Square-Root Behavior 569

For q ≥ 2, we apply the Hölder inequality on the integral to obtain

�x

(∫ t

s

√
2�XudWu

)q

≤ C�t − s�
q
2−1
∫ t

s
�x�X

q
2
u � du ≤ C�t − s�

q
2 sup
s≤u≤t

�x�X
q
2
u ��

which completes the second assertion. For 1 ≤ q < 2, we apply the Hölder inequality
on the expectation and we obtain

�x

(∫ t

s

√
2�XudWu

)q

≤
(∫ t

s
2��x�Xu�du

) q
2

≤ C�at + x�
q
2 �t − s�

q
2 �

using �x�Xu� = au+ x. This completes the second assertion. Concerning the last
one, we use the Hölder inequality with 1

q
+ 2

p
= 1 and 2 < p < a

�
which ensures the

boundedness of all the terms. We obtain

�x

∣∣∣∣ 1Xt

− 1
Xs

∣∣∣∣ ≤ �Xt − Xs�q
∥∥X−1

t

∥∥
p

∥∥X−1
s

∥∥
p

≤ C�t − s�
1
2 sup
s≤u≤t

(
�x�X

q
2
u �
) 1

q ∥∥X−1
t

∥∥
p

∥∥X−1
s

∥∥
p
�

since for q ≥ 2, �x�Xt − Xs�q is bounded by C�t − s�
q
2 sups≤u≤t �x�X

q
2
u �. �

4.2. Parameter Estimation of � = �a� b�

The task now is to give sufficient conditions on the frequency �n in order to get
the same asymptotic results of Theorems 5 and 6, when we replace the continuous
MLE estimator �̂tn 	= �âtn

� b̂tn � by the discrete one �̂
�n
tn

	= �â
�n
tn
� b̂

�n
tn
�.

Theorem 8. Under the above notations, for b > 0 and a > 2�, if n�2
n → 0 then we

have

√
tn

(
1
tn

∫ tn

0
Xsds −

1
tn

n−1∑
k=0

�nXtk

)
−→ 0 and

√
tn

(
1
tn

∫ tn

0

1
Xs

ds − 1
tn

n−1∑
k=0

�n

Xtk

)
−→ 0� (17)

in L1 and in probability. Consequently,

��

{√
tn��̂

�n
tn

− ��
}

⇒��2

(
0� 2��−1

)
� with � =

(
b

a−�
−1

−1 a
b

)



Proof. For the first convergence in relation (17), thanks to the first assertion of
Proposition 4, we consider the L1 norm and we write

1√
tn
�x

∣∣∣∣∣∫ tn

0
Xsds −

n−1∑
k=0

�nXtk

∣∣∣∣∣
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570 Ben Alaya and Kebaier

≤ 1√
tn

n−1∑
k=0

∫ tk+1

tk

�x

∣∣Xs − Xtk

∣∣ds
≤ C√

tn

n−1∑
k=0

∫ tk+1

tk

√
s − tkds ≤

C√
tn

n−1∑
k=0

�
3
2
n = C

√
n�n −→ 0�

since n�2
n −→ 0. In the same manner, thanks to the second assertion of Propostion

4, we have

1√
tn
�x

∣∣∣∣∣∫ tn

0

ds

Xs

−
n−1∑
k=0

�n

Xtk

∣∣∣∣∣ ≤ 1√
tn

n−1∑
k=0

∫ tk+1

tk

�x

∣∣∣∣ 1Xs

− 1
Xtk

∣∣∣∣ds ≤ C
√
n�n −→ 0


Finally, as
√
tn��̂

�n
tn

− �� = √
tn��̂

�n
tn

− �̂tn �+
√
tn��̂tn − �� and thanks to Theorem 5,

it is sufficient to prove
√
tn��̂

�n
tn

− �̂tn � −→ 0 in probability. This last convergence is
easily obtained by standard arguments using the first part of the theorem. In fact,
for instance to prove the convegence of the first compenent we write

√
tn�â

�n
tn

− âtn
� = B̂tn

√
tn�Â

�n
tn

− Âtn
�− Âtn

√
tn�B̂

�n
tn

− B̂tn
�

B̂2
tn
+ B̂tn

�B̂
�n
tn

− B̂tn
�




where

Âtn
=
(
logXtn

− log x

tn
+ �

tn

∫ tn

0

ds

Xs

)(
1
tn

∫ tn

0
Xsds

)
− Xtn

− x

tn

B̂tn
=
(
1
tn

∫ tn

0

ds

Xs

)(
1
tn

∫ tn

0
Xsds

)
− 1�

and �Â
�n
tn
� B̂

�n
tn
� is simply the discretization version of the couple �Âtn

� B̂tn
�. From

the first part, we have the convergence in probability of
√
tn�Â

�n
tn

− Âtn
� B̂

�n
tn

− B̂tn
�

toward zero and from Theorem 4 we have the convergence in probabilty of the
couple �Âtn

� B̂tn
�. Which completes the proof. �

Theorem 9. Under the above notations, for b = 0 and a > 2�,

1. If n�2
n → 0, then we have

tn

(
1
t2n

∫ tn

0
Xsds −

1
t2n

n−1∑
k=0

�nXtk

)
−→ 0� in L1 and in probability


2. If n�
3
2
n

log�n�n�
→ 0, then we have

tn

(
1

log tn

∫ tn

0

1
Xs

ds − 1
log tn

n−1∑
k=0

�n

Xtk

)
−→ 0� in L1 and in probability
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3. Consequently, if n�2
n → 0 and n�

3
2
n

log�n�n�
→ 0, then we have

��

{
diag�

√
log tn� tn���̂

�n
tn

− ��
}

⇒

(√
2��a− ��G�

a− R1

I1

)
�

where �Rt� is the CIR process, starting from 0, solution to (2), It =
∫ t

0 Rsds, and G
is a standard normal random variable indepedent of �R1� I1�.

Proof. For the first convergence, thanks to the second assertion of Proposition 5,
we consider the L1 norm and we write

1
tn
�x

∣∣∣∣∣∫ tn

0
Xsds −

n−1∑
k=0

�nXtk

∣∣∣∣∣ ≤ 1
tn

n−1∑
k=0

∫ tk+1

tk

�x

∣∣Xs − Xtk

∣∣ds
≤ C

tn

n−1∑
k=0

∫ tk+1

tk

√
as + x

√
s − tkds

≤ C
�

1
2
n

tn

∫ tn

0

√
as + xds ≤ C

√
n�n −→ 0�

since n�2
n −→ 0. In the same manner, thanks to the second assertion of Propostion

4, we have

tn
log tn

�x

∣∣∣∣∣∫ tn

0

ds

Xs

−
n−1∑
k=0

�n

Xtk

∣∣∣∣∣ ≤ tn
log tn

n−1∑
k=0

∫ tk+1

tk

�x

∣∣∣∣ 1Xs

− 1
Xtk

∣∣∣∣ds
≤ C

tn
√
�n

log tn

n−1∑
k=0

∫ tk+1

tk

sup
tk≤u≤s

(
�x�X

q
2
u �
) 1

q ∥∥X−1
tk

∥∥
p

∥∥X−1
s

∥∥
p
ds�

using the third assertion of Proposition 5. Thanks to the first assertion of
Proposition 3, in one hand, for s < 1 the integrand is bounded, and in the other
hand, for s ≥ 1,

sup
tk≤u≤s

(
�x�X

q
2
u �
) 1

q ≤ Cs
1
2 �

∥∥X−1
s

∥∥
p
≤ Cs−1� and

∥∥X−1
tk

∥∥
p
≤ Ct−1

k ≤ 2Cs−1 when �n ≤
1
2



It follows that for s ≥ 1, suptk≤u≤s

(
�x�X

q
2
u �
) 1

q ∥∥X−1
tk

∥∥
p

∥∥X−1
s

∥∥
p
≤ Cs−

3
2 . Consequently,

for n large enough, we get

tn
log tn

�x

∣∣∣∣∣∫ tn

0

ds

Xs

−
n−1∑
k=0

�n

Xtk

∣∣∣∣∣ ≤ C
tn
√
�n

log tn
�1+ 1√

tn
� ≤ C

tn
√
�n

log tn
−→ 0�

since n�
3
2
n

log�n�n�
→ 0. Finally, as

diag�
√
log tn� tn���̂

�n
tn

− �� = diag�
√
log tn� tn���̂

�n
tn

− �̂tn �+ diag�
√
log tn� tn���̂tn − ��
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572 Ben Alaya and Kebaier

and thanks to the second assertion of Theorem 6, it is sufficient to prove
diag�

√
log tn� tn���̂

�n
tn

− �̂tn � −→ 0 in probability. In order to show this convegence,
a similar analysis to that in the previous proof can be done. Indeed, we rewrite the
both compenents as follows

log tn�â
�n
tn

− âtn
� = D̂tn

log tn�Â
�n
tn

− Âtn
�− Âtn

log tn�D̂
�n
tn

− D̂tn
�

D̂2
tn
+ D̂tn

�D̂
�n
tn

− D̂tn
�

tn�b̂
�n
tn

− b̂tn � =
D̂tn

tn�B̂
�n
tn

− B̂tn
�− B̂tn

tn�D̂
�n
tn

− D̂tn
�

D̂2
tn
+ D̂tn

�D̂
�n
tn

− D̂tn
�

�

where

Âtn
=
(
logXtn

− log x

t2n
+ �

t2n

∫ tn

0

ds

Xs

)(
1

log tn

∫ tn

0
Xsds

)
− Xtn

− x

tn log tn

B̂tn
=
(
logXtn

− log x + �
∫ tn
0

ds
Xs

)
tn log tn

− Xtn
− x

t2n

(
1

log tn

∫ tn

0

ds

Xs

)
D̂tn

=
(

1
log tn

∫ tn

0

ds

Xs

)(
1
t2n

∫ tn

0
Xsds

)
− 1

log tn
�

and �Â
�n
tn
� B̂

�n
tn
� D̂

�n
tn
� is simply the discretization version of the triplet �Âtn

� B̂tn
� D̂tn

�.
From the above assertions, the rate of convergence in probability of �Â

�n
tn

−
Âtn

� B̂
�n
tn

− B̂tn
� D̂

�n
tn

− D̂tn
� toward zero is tn, using Theorem 2 we have the

convergence in distribution of the couple �Âtn
� B̂tn

� D̂tn
�, and now it is easy to check

that diag�
√
log tn� tn���̂

�n
tn

− �̂tn � vanishes. Which completes the proof. �

5. Conclusion

We have investigated the asymptotic behavior of the MLE for square-root
diffusions in ergodic and nonergodic cases. However, these estimators do not make
sense when a < � and are not consistent when b < 0. One can wonder how to
overcome this problem by constructing, in these particular cases, new consistent
estimators with explicit asymptotic behavior.
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