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PARAMETER ESTIMATION FOR THE SQUARE-ROOT DIFFUSIONS:
ERGODIC AND NONERGODIC CASES
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Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS, (UMR 7539), Villetaneuse,
France

� This article deals with the problem of parameter estimation in the Cox-Ingersoll-Ross (CIR)
model (Xt)t≥0. This model is frequently used in finance for example as a model for computing
the zero-coupon bound price or as a dynamic of the volatility in the Heston model. When the
diffusion parameter is known, the maximum likelihood estimator (MLE) of the drift parameters
involves the quantities :

∫ t
0 Xsds and

∫ t
0

ds
Xs
. At first, we study the asymptotic behavior of these

processes. This allows us to obtain various and original limit theorems on our estimators,
with different rates and different types of limit distributions. Our results are obtained for both
cases : ergodic and nonergodic diffusion. Numerical simulations were processed using an exact
simulation algorithm.

Keywords Cox-Ingersoll-Ross processes; Laplace transform; Limit theorems;
Nonergodic diffusion; Parameter inference; Simulation efficiency.

Mathematics Subject Classification 44A10; 60F05; 62F12; 65C05.

1. INTRODUCTION

Over the last few years, an interesting process emerged and became
quite popular in finance, after Cox-Ingersoll-Ross (CIR) proposed it for
modelling short-term interest rates.[4] It is also used for modelling stochastic
volatility in the Heston model.[10] The CIR process (Xt)t≥0, also known as the
square root diffusion, is solution to the stochastic differential equation (SDE)

dXt = (a − bXt)dt + √
2�|Xt |dWt , (1)

where X0 = x > 0, a > 0, b ∈ �, � > 0 and (Wt)t≥0 is a standard Brownian
motion. Under the above assumption, based on the parameters that we will
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610 Alaya and Kebaier

suppose valid throughout the article, this SDE has a unique strong solution
(Xt)t≥0 (see Ikeda and Watanabe,[11] p. 221) and from the comparison
theorem for one-dimensional diffusion process (see Revuz and Yor,[25]

p. 394) we deduce that Xt ≥ 0. In the particular case b = 0 and � = 2,
we recover the square of a a -dimensional Bessel process starting at x .
Let us recall now some basic properties on the CIR model and let �0 :=
inf�t ≥ 0|Xt = 0�, with the convention inf∅ = ∞. In the case a ≥ �, the
process is strictly positive, �0 is infinite almost surely, otherwise it is non-
negative, which means that it can reach the state 0. More precisely, for
a < � and b ≥ 0, �0 is finite almost surely and for a < � and b < 0, we
have �x(�0 < ∞) ∈]0, 1[. Note that in the case 0 < a < �, when the process
reaches the boundary, the state 0 is instantaneously reflecting (see, e.g.,
Göing-Jaeschke and Yor[8] or Lamberton and Lapeyre[19] for more details).
From the ergodicity point of view, the CIR process is ergodic and its
stationary distribution, say �, is a Gamma law with shape parameter a/�
and scale parameter �/b, provided that b > 0. In this case, for all h ∈ L1(�),
1
t

∫ t
0 h(Xs)ds converges almost surely to

∫
� h(x)�(dx).

During the last decades, several authors studied the problem of
estimating parameters in the drift coefficient when a diffusion process
was observed continuously; this corresponds to observe the path of the
diffusion over an interval [0,T ], T > 0. This theory has been established
mainly by Lipster and Shiryayev[20] and Kutoyants.[18] This approach is
rather theoretical, since the real data are discrete time observations.
However, if the error due to discretization is negligible, then the statistical
results obtained for the continuous time model are valid for discrete time
observations too. In the literature, most of the articles are concerned with
ergodic diffusions and only few results can be found for the nonergodic
case (see Ref.[18] section 3.1 of chapter 3 and references therein). In this
last reference, many technics are proposed to construct estimators of the
drift parameters. Furthermore, when the drift coefficient depends linearly
on the parameters, one can hope to obtain a nice explicit formula of the
maximum likelihood estimator (MLE).

Several papers have studied the MLE for the problem of estimating
parameters in the CIR model. Fournié and Talay[7] have established the
asymptotic normality in the subdomain of the two-dimensional parameter
space (a, b) ∈]�,∞[×]0,∞[. Afterward, Overbeck[22] considers the CIR
model in the context of a continuous branching process with immigration
rate a > 0 (CBI) and he gives more detailed results by including singular
subdomains. By establishing all three properties—LAN (local asymptotic
normality), LAMN (local asymptotic mixed normality) and LAQ (local
asymptotic quadraticity)—he obtains consistency and asymptotic normality
for the MLE for different submodels. Simultaneously, Overbeck and
Ryden[23] examine the same problem from the discrete point of view.
On the process itself, an important old reference for CBI is Kawazu and
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Parameter Estimation for Square-Root Diffusions 611

Watanabe[15] (see also a recent work by Keller-Ressel and Mijatovic[16] and
references their).

The aim of this article is to investigate the MLE of the drift parameters
in the CIR model for a range of values (a, b, �) covering ergodic and
nonergodic situations. Roughly speaking, if we estimate one of the drift
parameters and suppose known the other one, the MLE error has the form
Mt/〈M 〉t , where (Mt)t≥0 is a Brownian martingale with quadratic variation
〈M 〉t . If b > 0 and a > �, the asymptotic normality of the estimators is
obtained using the classical martingale central limit theorem, as in Fournié
and Talay.[7] Otherwise, this argument is no more valid, even in the special
ergodic case b > 0 and a ≤ �, since

∫
�(1/x)�(dx) = ∞. To overcome this

difficulty, we study the asymptotic behavior of the couple (Mt , 〈M 〉t).
In the second section, as in our framework 〈M 〉t is either

∫ t
0 Xsds or∫ t

0
ds
Xs
, we proceed by computing their Laplace transform. The first one is

well known (see, e.g., Lamberton and Lapeyre,[19] p. 127). However for
the second one, which is more subtle, we apply recent results of Craddock
and Lennox,[5] who employ Lie symmetry methods to evaluate certain
expectations for a large class of Itô diffusions. This allows us to obtain
a precise description of the asymptotic of the

∫ t
0 Xsds (see Proposition 1

and 3) and
∫ t
0

ds
Xs

(see Proposition 2 and 4).
In the third section, we take advantage of this study to prove new

original results on the asymptotic of the MLE that are not necessarily
normal. The asymptotic theorem concerning the MLE, b̂T (resp. âT ),
of b (resp. a) is obtained with different rates of convergence that are
unusual in most cases :

√
T for b > 0, T for b = 0 and e−bT /2 for b < 0

(resp.
√
T for b > 0 and a > �, T for b > 0 and a = �,

√
logT for b = 0

and a > � and logT for b = 0 and a = �). In those different cases, the
corresponding limit distributions are given by Theorem 1 for the MLE of
b and Theorem 2 for the MLE of a.

Finally in the last section, we illustrate our asymptotic results using
an exact simulation method. Indeed, to simulate the couple (XT ,

∫ T
0 Xsds)

we use and perfect the method of Broadie and Kaya[3] based on an
explicit evaluation of the conditional Laplace transform of

∫ T
0 Xsds given

XT . Concerning (XT ,
∫ T
0

ds
Xs
), we first establish a new explicit formula of the

conditional Laplace transform of
∫ T
0

ds
Xs

given XT (see Theorem 3 and 4)
and then we deduce an exact simulation method of the couple in the same
manner as in Ref.[3]

2. THE ASYMPTOTIC BEHAVIOR OF
∫ t

0 Xsds AND
∫ t

0
ds
Xs

Let us recall that (Xt)t≥0 denotes a CIR process solution to (1). It is
relevant to consider separately the cases b = 0 and b 	= 0, since the process
(Xt)t≥0 behaves differently.
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612 Alaya and Kebaier

2.1. Case b = 0

In this section, we consider the Cox-Ingersoll-Ross CIR process (Xt)t≥0

with b = 0. In this particular case, (Xt)t≥0 satisfies the SDE

dXt = adt + √
2�XtdWt � (2)

Note that for � = 2, we recover the square of a a -dimensional Bessel
process starting at x and denoted by BESQa

x . This process has been
attracting considerably the attention of several studies (see Revuz and
Yor[25]). The asymptotic behavior of (Xt ,

∫ t
0 Xsds) and

∫ t
0

ds
Xs

are established
by our next two propositions. Related results can be found in lemmas 4
and 5 of Overbeck.[22]

Proposition 1. Let (Xt)t≥0 be a CIR process solution to (2), we have(
Xt

t
,
1
t 2

∫ t

0
Xsds

)
law−→ (R1, I1) as t tends to infinity�

where (Rt)t≥0 is the CIR process starting from 0, solution to (2) and It = ∫ t
0 Rsds.

Proposition 2. Under the above notations, we have

1. �x

(∫ t
0

ds
Xs

< ∞
)

= 1 if and only if a ≥ �.

2. If a > � then 1
log t

∫ t
0

ds
Xs

�−→ 1
a−�

as t tends to infinity.

3. If a = � then 1
(log t)2

∫ t
0

ds
Xs

law−→ �1 as t tends to infinity, where �1 is the hitting
time associated with Brownian motion �1 := inf�t > 0 : Wt = 1√

2�
�.

In order to prove these propositions, we choose to compute the
Laplace transform of the couple (Xt ,

∫ t
0 Xsds) and

∫ t
0

ds
Xs
. Here are the

obtained results.

Lemma 1. We have

• For � ≥ 0 and � ≥ 0,

�x

(
e−�Xt−�

∫ t
0 Xsds

)
= e−a	�,�(t)e−x
�,�(t),

where functions 	�,� and 
�,� are given by

	�,�(t) = 1
�
log

(
2��
�

sinh(�t/2) + cosh(�t/2)
)
,


�,�(t) = � cosh(�t/2) + 2�
�
sinh(�t/2)

2��
�
sinh(�t/2) + cosh(�t/2)

and � = 2
√
��.
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Parameter Estimation for Square-Root Diffusions 613

• For � > 0,

�x

(
e−�

∫ t
0

ds
Xs

)
= �(k + 


2 + 1
2)

�(
 + 1)

( x
�t

) 

2+ 1

2−k

exp
(
− x
�t

)
1F1

(
k + 


2
+ 1

2
, 
 + 1,

x
�t

)
, (3)

where k = a
2� , 
 = 1

�

√
(a − �)2 + 4�� and 1F1 is the confluent hypergeometric

function defined by 1F1(u, v, z) = ∑∞
n=0

un
vn

zn

n! , with u0 = v0 = 1, and for n ≥ 1,
un = ∏n−1

k=0(u + k) and vn = ∏n−1
k=0(v + k).

Proof. Taking b = 0 in Proposition 2.5 of chapter 6 in Ref.[19] we deduce
the first assertion. For the second one, we apply Theorem 5.10 in Ref.[5] to
our process. We have just to be careful with the misprint in formula (5.24)
of Ref.[5] More precisely, we have to replace

√
Axy, in the numerator of

the first term in the right-hand side of this formula, by
√
Ax/y. Hence, for

a > 0 and � > 0, we obtain the so called fundamental solution of the PDE
ut = �xuxx + aux − (�x + �x)u, � > 0, � > 0:

p(t , x , y) =
√
��

� sinh(
√
��t)

( y
x

)k−1/2

exp

(
−

√
��(x + y)

� tanh(
√
��t)

)
I


(
2
√
��

√xy

� sinh(
√
��t)

)
, (4)

where I
 is the modified Bessel function of the first kind. This
yields the Laplace transform of the couple

(∫ t
0 Xsds,

∫ t
0

ds
Xs

)
, since

�x(e
−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs ) = ∫ ∞

0 p(t , x , y)dy. Evaluation of this integral is routine,
see formula 2 of section 6.643 in Ref.[9] Therefore, we get

�x

(
e−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs

)

= �(k + 

2 + 1

2)

�(
 + 1)

(√
��x coth(

√
��t)

�

)−k

exp

(
−

√
��x
�

coth(
√
��t)

)

× exp


 √

��x

2� sinh(
√
��t) cosh

(√
��t

)



× M−k, 
2


 √

��x

� sinh(
√
��t) cosh

(√
��t

)

 , (5)
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614 Alaya and Kebaier

where Ms,r (z) is the Whittaker function of the first kind given by

Ms,r (z) = zr+
1
2 e− z

2 1F1

(
r − s + 1

2
, 2r + 1, z

)
� (6)

See Ref.[9] for more details about those special functions. By inserting
relation (6) in (5) we obtain

�x

(
e−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs

)

= �(k + 

2 + 1

2)

�(
 + 1)

(
cosh(

√
��t)

)− 

2− 1

2−k
( √

��x

� sinh(
√
��t)

) 

2+ 1

2−k

× exp

(
−

√
��x
�

coth(
√
��t)

)

1F1

(
k + 


2
+ 1

2
, 
 + 1,

√
��x

� sinh(
√
��t) cosh(

√
��t)

)
�

We complete the proof by letting � tend to 0. �

Proof of Proposition 1. Under the notations of the above Lemma, it is
easy to check that

	�
t ,

�

t2
(t) = −1

�
log

( √
��

�� sinh(
√
��) + √

�� cosh(
√
��)

)
, lim

t→∞

�

t ,
�

t2
(t) = 0

and

lim
t→∞

�x

(
e−�

Xt
t − �

t2
∫ t
0 Xsds

)
=

( √
��

�� sinh(
√
��) + √

�� cosh(
√
��)

) a
�

�

Noting that the first assertion of Lemma 1 remains valid with x = 0
(see Ref.[19]), we deduce that the obtained limit is simply the Laplace
transform of the CIR process starting from 0, solution to (2) with t = 1.
This completes the proof. �

Remark. It is worth to note that Proposition 1 can be obtained by a
scaling argument, but in order to standardize the technics used in this
section we dropped this idea.

Proof of Proposition 2. For a ≥ �, by Lemma 1, we have

�x

(∫ t

0

ds
Xs

< ∞
)

= lim
�→0

�x

(
e−�

∫ t
0

ds
Xs

)
= 1�
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Parameter Estimation for Square-Root Diffusions 615

In the case a < �, we have

�x

(∫ t

0

ds
Xs

< ∞
)

= 1
�(2 − a

�
)

( x
�t

)1− a
�

exp
(
− x
�t

)
1F1

(
1, 2 − a

�
,
x
�t

)
�

Thanks to the following formula (see section 9�211 in Ref.[9])

1F1 (r , s, z) = �(s)
�(r )�(s − r )

z1−s

∫ z

0
euur−1(z − u)s−r−1du,

for Re(s) > Re(r ) > 0, we obtain

�x

(∫ t

0

ds
Xs

< ∞
)

= e− x
�t

�(1 − a
�
)

∫ x
�t

0
eu

( x
�t

− u
)− a

�

du�

After the change of variable, v = x
�t − u, the last relation becomes

�x

(∫ t

0

ds
Xs

< ∞
)

= 1
�(1 − a

�
)

∫ x
�t

0
e−vv− a

� dv < 1�

For the second and the third assertions, we consider a positive function
�(t) increasing to +∞ when t → +∞. Using standard evaluations, it is easy
to prove that

lim
t→+∞

�x

(
e

− �

�(t)2
∫ t
0

ds
Xs

)
= lim

t→+∞
exp

(
− 1
2�

(
�− a +

√
(a − �)2 + 4��

�(t)2

)
log(t)

)
�

• If a > �, let � denotes a function such that limx→0 �(x) = 0, we have

lim
t→+∞

�x

(
e

− �

�(t)2
∫ t
0

ds
Xs

)

= lim
t→+∞

exp
(

−
(

�

�(t)2(a − �)
+ 1

�(t)2
�

(
1

�(t)2

)
log (t)

))

= exp
(

− �

a − �

)
, by taking �(t)2 = log(t)�

• If a = �

lim
t→+∞

�x

(
e

− �

�(t)2
∫ t
0

ds
Xs

)
= lim

t→+∞
exp

(
− 1√

�

√
�

�(t)
log (t)

)

= exp
(

−
√
�√
�

)
, by taking �(t) = log(t)�

This completes the proof. �

We now turn to the case b 	= 0.
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616 Alaya and Kebaier

2.2. Case b �= 0

Let us resume the general model of the CIR given by relation (1) with
b 	= 0, namely

dXt = (a − bXt)dt + √
2�XtdWt , (7)

where X0 = x > 0, a > 0, b ∈ �∗, � > 0. Note that this process may be
represented in terms of a square Bessel process through the relation Xt =
e−btY ( �

2b (e
bt − 1)),where Y denotes a BESQ

2a
�
x . This relation results from

simple properties of square Bessel processes (see, e.g., Göing-Jaeschke and
Yor[8] and Revuz and Yor[25]). We can now formulate the main results of
this subsection.

Proposition 3. Let (Xt)t≥0 be a CIR process solution to (7), we have

1. If b > 0 then 1
t

∫ t
0 Xsds

�−→ a
b as t tends to infinity.

2. If b < 0 then (e btXt , e bt
∫ t
0 Xsds)

law−→ (Rt0 , t0Rt0), as t tends to infinity, where
t0 = −1/b and (Rt)t≥0 is the CIR process, starting from x, solution to (2).

Proposition 4. Under the above notations, we have

1. �x(
∫ t
0

ds
Xs

< ∞) = 1if and only if a ≥ �.

2. If b > 0 and a > � then 1
t

∫ t
0

ds
Xs

�−→ b
a−�

as t tends to infinity.

3. If b > 0 and a = � then 1
t2

∫ t
0

ds
Xs

law−→ �2 as t tends to infinity, where �2 is the
hitting time associated with Brownian motion �2 := inf�t > 0 : Wt = b√

2�
�.

4. If b < 0 and a ≥ � then
∫ t
0

ds
Xs

law−→ It0 := ∫ t0
0 Rsds as t tends to infinity, where

t0 = −1/b and (Rt)t≥0 is the CIR process, starting from x, solution to (2).

Remark. When a > � and b > 0 the CIR process is ergodic and the
stationary distribution is a Gamma law with shape a/� and scale �/b.

Let �
law= �(a/�, �/b), according to the ergodic theorem, 1

t

∫ t
0 Xsds

�−p�s�−→
�(�) = a

b and 1
t

∫ t
0

ds
Xs

�−p�s�−→ �( 1
�
) = b

a−�
as t tends to infinity. In this case we

recover the first assertion of Proposition 3 and the second assertion of
Proposition 4.

In order to prove these propositions we need the following result.

Lemma 2. We have,

• for � ≥ 0 and � ≥ 0, the Laplace transform of (Xt ,
∫ t
0 Xsds) is given by

�x

(
e−�Xt−�

∫ t
0 Xsds

)
= e−a	̃�,�(t)e−x
̃�,�(t), (8)
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Parameter Estimation for Square-Root Diffusions 617

where

	̃�,�(t) = −1
�
log

(
2�e t(b−�)/2

2��(1 − e−�t) + (� − b)e−�t + (� + b)

)

and


̃�,�(t) = �((� + b)e−�t + (� − b)) + 2�(1 − e−�t)

2��(1 − e−�t) + (� − b)e−�t + (� + b)
,

with � = √
b2 + 4��.

• For � > 0, the Laplace transform of
∫ t
0

ds
Xs

is given by

�x

(
e−�

∫ t
0

ds
Xs

)
= �(k + 


2 + 1
2)

�(
 + 1)
1

xk�k
�



2+ 1

2

× exp
(

b
2�

[
at − 2x

ebt − 1

])
1F1

(
k + 


2
+ 1

2
, 
 + 1, �

)
, (9)

where k = a
2� , � = bebt

�(ebt−1) , � = bx
�(ebt−1) and 
 = 1

�

√
(a − �)2 + 4��.

Remark. Note that the limit of the above Laplace transform, when b goes
to 0, in formula (9) allows us to recover relation (3).

Proof. The first assertion is given by Proposition 2.5 of chapter 6 in
Ref.[19] For the second one, we first apply Theorem 5.7 of Ref.[5] for b ∈ �.
We obtain the fundamental solution of the PDE ut = �xuxx + (a − bx)ux −
�

x u, � > 0:

p(t , x , y)

= |b|
2� sinh(|b|t/2)

( y
x

)a/(2�)−1/2

× exp
(

b
2�

�at + (x − y)� − |b|(x + y)
2� tanh(|b|t/2)

)
I


( |b|√xy

� sinh(|b|t/2)
)
�

(10)

By the parity of hyperbolic functions, we omit the |�| in the above
formula. This yields the Laplace transform of

∫ t
0

ds
Xs
, since �x(e

−�
∫ t
0

ds
Xs ) =∫ ∞

0 p(t , x , y)dy. In the same manner as in the proof of Lemma 1, formula
2 of section 6.643 in Ref.[9] gives us

�x

(
e−�

∫ t
0

ds
Xs

)
= �(k + 


2 + 1
2)

�(
 + 1)
e

�
2

xk�k
exp

(
b
2�

[
at − 2x

ebt − 1

])
M−k, 
2

(�) � (11)

Finally, by inserting relation (6) in (11) we obtain the announced result.
�
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618 Alaya and Kebaier

Remark. In the above proof, relation (10) extends Corollary 5.8 of Ref.[5]

established in the case b > 0, to the case b ∈ �. It is worth to note that
formula (5.20) in this Corollary remains valid for this extension, thanks to
the parity of hyperbolic functions.

In the following proofs � will denotes a function satisfying limx→0

�(x) = 0, that can change from an evaluation to an other.

Proof of Proposition 3. Let �(t) be a (non-random) positive function
increasing to +∞ when t → +∞, we take � = 0 and replace � by �/�(t)2

in relation (8). In the case b > 0, an easy computation shows that

lim
t→+∞

�x

(
e

− �

�(t)2
∫ t
0 Xsds

)
= lim

t→+∞
exp

(
− ab
2�

t

(√
1 + 4��

b2�(t)2
− 1

))

= exp
(

− ab
2�

t
�(t)2

(
2��
b2

+ �(
1

�(t)2
)

))
�

The first assertion follows by choosing �(t)2 = t .
Next, we study the case b < 0. According to the first assertion of

Lemma 2, we have

�x

(
e−�ebt Xt−�ebt

∫ t
0 Xsds

)
= e−a	̃

�ebt ,�ebt (t)e−x
̃
�ebt ,�ebt (t)

with � = √
b2 + 4��e bt . As the Taylor’s expansion of � + b is equal to

− 2��
b e bt + e bt�(e bt), we deduce that limt→+∞(� + b)t = 0 and limt→+∞(� + b)

e�t = limt→+∞(� + b)e−bt = − 2��
b . Hence, it’s easy to check that

lim
t→+∞

	̃�ebt ,�ebt (t) = −1
�
log

( −b
�� − b − �

b �

)
and

lim
t→+∞


̃�ebt ,�ebt (t) = −b� + �

�� − b − �
b �

�

Therefore

lim
t→+∞

�x

(
e−�ebt Xt−�ebt

∫ t
0 Xsds

)
=

( −b
�� − b − �

b �

)a/�

exp
(

−x
−b� + �

�� − b − �
b �

)
�

On the other hand, using the first assertion of Lemma 3, we identify
the Laplace transform of the announced couple limit

(
Rt0 , t0Rt0

)
, which

completes the proof. �
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Parameter Estimation for Square-Root Diffusions 619

Remark. For b < 0, we can also give this representation e bt
∫ t
0 Xsds

law−→
L := L1 + L2 as t tends to infinity where L1 and L2 are two independent
random variables, L1 has a gamma distribution and L2 has a compound
Poisson distribution. More precisely L1

law= �(a/�, �/b2) and L2
law= ∑N

k=1 Xk

where N law= �(xb/�), for all k ≥ 1, Xk
law= �(�/b2) and (N ,X1, � � � ,Xn , � � � )

are mutually independent.

Proof of Proposition 4. Note that, the Laplace transform of
∫ t
0

ds
Xs

converges to �x(
∫ t
0

ds
Xs

< ∞) as � → 0. If a ≥ �, using standard evaluations,
it is easy to prove that

�x

(∫ t

0

ds
Xs

< ∞
)

=
(

�

x�

) a
2�

exp
(

b
2�

[
at − 2x

ebt − 1

]
+ �

)
= 1�

In the other case, a < �, we have

�x

(∫ t

0

ds
Xs

< ∞
)

= 1
�(2 − a

�
)

�1− a
2�

(x�)
a
2�

exp
(

b
2�

[
at − 2x

ebt − 1

])
1F1

(
1, 2 − a

�
, �

)

= �1− a
�

�(2 − a
�
)
e−�

1F1
(
1, 2 − a

�
, �

)
�

Thanks to the following formula (see section 9.211 in Ref.[9])

1F1 (r , s, z) = �(s)
�(r )�(s − r )

z1−s

∫ z

0
euur−1(z − u)s−r−1du,

for Re(s) > Re(r ) > 0, we obtain

�x

(∫ t

0

ds
Xs

< ∞
)

= e−�

�(1 − a
�
)

∫ �

0
eu (� − u)− a

� du�

After the change of variable, v = � − u, the last relation becomes

�x

(∫ t

0

ds
Xs

< ∞
)

= 1
�(1 − a

�
)

∫ �

0
e−vv− a

� dv < 1�

Now our task is to study the asymptotic behavior in distribution of the
quantity

∫ t
0

ds
Xs

when b > 0 and a ≥ �. Let �(t) be a (non-random) positive
function increasing to +∞ when t → +∞. If we replace � by �/�(t)2
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620 Alaya and Kebaier

in relation (9), since log(�) = log(bx/�) − bt − log(1 − e−bt),

lim
t→+∞

�x

(
e

− �

�(t)2
∫ t
0

ds
Xs

)

= lim
t→+∞

1
xk�k

exp

(
ab
2�

t −
[

1
2�

√
(a − �)2 + 4��

�(t)2
+ 1

2

]
log(�)

)

= lim
t→+∞

exp

(
ab
2�

t −
[

1
2�

√
(a − �)2 + 4��

�(t)2
+ 1

2

]
bt

)
�

• For a > �, we have

lim
t→+∞

�x

(
e

− �

�(t)2
∫ t
0

ds
Xs

)

= lim
t→+∞

exp

(
ab
2�

t −
[
a − �

2�

√
1 + 4��

�(t)2(a − �)2
+ 1

2

]
bt

)

= lim
t→+∞

exp
(

�bt
�(t)2(a − �)

+ t
�(t)2

�

(
1

�(t)2

))
�

Taking �(t)2 = t , we deduce that 1
t

∫ t
0

ds
Xs

converges in distribution and of
course in probability to the constant b/(a − �).

• For a = �, we have

lim
t→+∞

�x

(
e

− �

�(t)2
∫ t
0

ds
Xs

)
= lim

t→+∞
exp

(
− bt√

��(t)
√
�

)
�

Taking now �(t) = t , we deduce that 1
t2

∫ t
0

ds
Xs

converges in distribution
to �2.

It remains now to prove the last assertion. For b < 0, when t goes to
infinity in relation (9), since � converges to 0 and � to −bx/�, we have

lim
t→+∞

�x

(
e−�

∫ t
0

ds
Xs

)

= �(k + 

2 + 1

2)

�(
 + 1)

(−bx
�

) 

2+ 1

2 1
xk 1F1

(
k + 


2
+ 1

2
, 
 + 1,

−bx
�

)

× lim
t→+∞

exp
(

b
2�

�at + 2x� − k log �
)

= �(k + 

2 + 1

2)

�(
 + 1)

(−bx
�

) 

2+ 1

2−k

exp
(
bx
�

)
1F1

(
k + 


2
+ 1

2
, 
 + 1,

−bx
�

)
�
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Parameter Estimation for Square-Root Diffusions 621

Finally, we conclude by identifying the limit distribution with relation (3)
in Lemma 1. �

3. STATISTICAL INFERENCE OF THE CIR MODEL

Let us first recall some basic notions on the construction of the
maximum likelihood estimator (MLE). Suppose that the one dimensional
diffusion process (Xt)t≥0 satisfies

dXt = b(�,Xt)dt + �(Xt)dWt , X0 = x0,

where the parameter � ∈ � ⊂ �p , p ≥ 1, is to be estimated. The
coefficients b and � are two functions satisfying conditions that guarantee
the existence and uniqueness of the SDE for each � ∈ �. We denote by ��

the probability measure induced by the solution of the equation on the
canonical space C(�+,�) with the natural filtration �t := �(Ws , s ≤ t), and
let ��,t := ��|�t be the restriction of �� to �t . If the integrals in the next
formula below make sense then the measures ��,t and ��0,t , for any �, �0 ∈
�, t > 0, are equivalent (see Jacod,[12] Jacod and Shiryaev[13] (e.g., Ch. III.3)
and Lipster and Shirayev[20] (e.g., Ch. 7) and we are able to introduce the
so called likelihood ratio

L�,�0
t := d��,t

d��0,t

= exp
{∫ t

0

b(�,Xs) − b(�0,Xs)

�2(Xs)
dXs − 1

2

∫ t

0

b2(�,Xs) − b2(�0,Xs)

�2(Xs)
ds
}
�

(12)

The process
(
L�,�0
t

)
t≥0

is an �t−martingale.

In the present section, we observe the process X T = (Xt)0≤t≤T as a
parametric model solution to equation (1), namely

dXt = (a − bXt)dt + √
2�XtdWt , (13)

where X0 = x > 0, a > 0, b ∈�, �> 0. The unknown parameter, say �, is
involved only in the drift part of the diffusion and we consider the two cases:

• under fixed value of a > 0, we consider laws of processes (13)
parameterized by � = b ∈ �,

• under fixed value of b ∈ �, we consider laws of the processes
parameterized by � = a ∈ [�,∞[.

This study includes both ergodic (b > 0 and a ≥ �) and nonergodic cases.
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622 Alaya and Kebaier

3.1. Parameter Estimation � = b

Fix a > 0 and consider the submodel ���,t : � = b ∈ �� for laws of
processes (13) parameterized by b ∈ �. In this case, we do have local
equivalence of probability measures. The appropriate likelihood ratio (12),
evaluated at time T with �0 = 0, is well defined and is given by

LT (b) := L�,�0
T = exp

{
b
2�

(x − XT ) + 1
4�

∫ T

0
(2ab − b2Xs)ds

}
�

The MLE b̂T of b maximizes LT (b), then

b̂T = aT + x − XT∫ T
0 Xsds

� (14)

Hence, the error is given by

b̂T − b = −√
2�

∫ T
0

√
XsdWs∫ T

0 Xsds
�

As mentioned in the introduction, the above error is obviously of the
form Mt/〈M 〉t , where (Mt)t≥0 is a Brownian martingale with quadratic
variation 〈M 〉t . If this quadratic variation, correctly normalized, converges
in probability then the classical martingale central limit theorem can be
applied. Otherwise, the study of the couple (XT ,

∫ T
0 Xs) will be helpful to

investigate the limit law of the error. The asymptotic behavior of b̂T − b can
be summarized as follows.

Theorem 1. The MLE of b satisfies

1. Case b > 0: �b

{√
T (b̂T − b)

}

⇒�

(
0, 2� b

a

)
.

2. Case b = 0 : �b

{
T (b̂T − b)

}

⇒ a−R1

I1
, where (Rt) is the CIR process, starting

from 0, solution to (2) and It = ∫ t
0 Rsds.

3. Case b < 0 : �b

{
e−bT /2(b̂T − b)

}

⇒ G

R , where (G ,R) is a couple of random
variable characterized with its joint moment generating-Laplace transform. For
� ∈ � and � ≥ 0,

�
(
e �G−�R

) =
(

b
��/b + b

) a
�

exp
(
x
��2/b + �

��/b + b

)
�

Therefore G and R are correlated, G is normal and R has the same distribution
as t0Rt0 , t0 = −1/b, where (Rt)t≥0 is the CIR process, starting from x, solution
to (2).
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Parameter Estimation for Square-Root Diffusions 623

Proof. In the case b > 0, by Proposition 3 and the central limit theorem
given by Y.A. Kutoyants (see Theorem 1.19 in Ref.[18]) we have

�b − lim
T→∞

1
T

∫ T

0
Xsds = a

b
, �b

{
1√
T

∫ T

0

√
XsdWs

}

⇒ �

(
0,

a
b

)
�

Therefore we obtain the first assertion. In the second case b = 0, by
Proposition 1 we have

�0

{
XT

T
,
1
T 2

∫ T

0
Xsds

}

⇒ (R1, I1)�

Hence

�0

{
T (b̂T − b)

}
= �0

{
a + x

T − XT
T

1
T 2

∫ T
0 Xsds

}

⇒ a − R1

I1
�

For the last case b < 0, by Proposition 3 we have

�b

{
e bTXT , e bT

∫ T

0
Xsds

}

⇒

(
R̃t0 , t0R̃t0

)
,

where t0 = −1/b and (R̃t)t≥0 is the CIR process, starting from x , solution
to (2). It follows that

�b

{
b̂T − b

}
= �b

{
e bT (aT + x − XT − b

∫ T
0 Xsds)

e bT
∫ T
0 Xsds

}

⇒ 0

and also in probability, which proves the consistency of b̂T . Now, in
order to study the asymptotic behavior of b̂T − b, we introduce the
joint moment generating-Laplace transform of the renormalized couple(
e bT /2

(−XT − b
∫ T
0 Xsds

)
, e bT

∫ T
0 Xsds

)
, namely for � in the neighborhood of

the origin and � ≥ 0 we consider

�x

(
e−�ebT /2(XT +b

∫ T
0 Xsds)−�ebT

∫ T
0 Xsds

)
= �x

(
e−�ebT /2XT −(�ebT /2b+�ebT )

∫ T
0 Xsds

)
�

By noting that the result of the first assertion in Lemma 2 remains valid
for small values of �, the above quantity becomes equal to e−a	̄�,�(T )e−x
̄�,�(T )

where

	̄�,�(T ) = −1
�
log

(
2�eT (b+�)/2

2��(e (�+ b
2 )T − e

b
2T ) + (� − b) + (� + b)e�T

)
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624 Alaya and Kebaier

and


̄�,�(T ) = �e bT /2((� + b) + (� − b)e�T ) + 2(�e bT /2b + �e bT )(e�T − 1)

2��(e (�+ b
2 )T − e

b
2T ) + (� − b) + (� + b)e�T

,

with � = √
b2 + 4�(�e bT /2b + �e bT ). Since � goes to −b and (� + b)T goes

to zero as T tends to infinity, we have

lim
T→∞

	̄�,�(T ) = −1
�

lim
T→∞

log

(
−2b

(2��e
b
2T + � + b)e�T − 2b

)

and

lim
T→∞


̄�,�(T ) = lim
T→∞

�e−bT /2(� + b) + 2�

(2��e
b
2T + � + b)e�T − 2b

�

A Taylor’s expansion gives limT→∞(2��e
b
2T + � + b)e�T = −2��/b and

limT→∞ e−bT /2(� + b) = 2��/b. This completes the proof. �

3.2. Parameter Estimation � = a

Fix b ∈ � and consider the submodel ���,t : � = a ∈ [�,∞[� for laws
of processes (13) parameterized by a ∈ [�,∞[. In this case, thanks to the
first assertion of both propositions 2 and 4 we have, for some reference
point a0 ∈ [�,∞[, �a0(

∫ T
0

ds
Xs

< ∞) = 1 and �a(
∫ T
0

ds
Xs

< ∞) = 1. Hence, we
have local equivalence of probability measures on the restricted parameter
space [�,∞[. According to relation (12), the appropriate likelihood ratio,
evaluated at time T with �0 = a0 ∈ [�,∞[, makes sense and is given by

LT (a) := L�,�0
T = exp

{
a − a0
2�

∫ T

0

dXs

Xs
− 1

4�

∫ T

0

a2 − 2abXs − a2
0 + 2a0bXs

Xs
ds
}
�

The MLE âT of a maximizes LT (a), then

âT = bT + ∫ T
0

dXs
Xs∫ T

0
ds
Xs

�

Hence, the error is given by

âT − a = √
2�

∫ T
0

dWs√
Xs∫ T

0
ds
Xs

�
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Parameter Estimation for Square-Root Diffusions 625

As explained in the last subsection, we can apply the classical martingale
central limit theorem when

∫ T
0

ds
Xs
, correctly normalized, converges in

probability. Otherwise, using Itô’s formula, we rewrite the MLE as follows

âT = logXT − log x + bT + �
∫ T
0

ds
Xs∫ T

0
ds
Xs

(15)

and now we study the couple (log(XT ),
∫ T
0

ds
Xs
) in order to obtain a limit

law for the error. The asymptotic behavior of âT − a can be summarized
as follows.

Theorem 2. The MLE of a is well defined for a ≥ � and satisfies

1. Case b = 0 and a > � : �a

{√
logT (âT − a)

}
⇒� (0, 2�(a − �)).

2. Case b > 0 and a > � : �a

{√
T (âT − a)

}

⇒�

(
0, 2�(a−�)

b

)
.

3. Case b = 0 and a = � : �a �(logT )(âT − a)�
⇒ 1
�1
, where �1 is the hitting

time associated with Brownian motion �1 = inf
{
t > 0 : Wt = 1√

2�

}
.

4. Case b > 0 and a = � : �a �T (âT − a)�
⇒ b
�2
, where �2 is the hitting time

associated with Brownian motion �2 = inf
{
t > 0 : Wt = b√

2�

}
.

5. Case b < 0 and a ≥ � : the MLE estimator âT is not consistent.

Proof. At first, from Proposition 2 and 4, we have �a(
∫ T
0

ds
Xs

< ∞) = 1 for
a ≥ �.

In the case b = 0 and a > �, by Proposition 2 and the central limit
theorem, we have

�a − lim
T→∞

1
logT

∫ T

0

ds
Xs

= 1
a − �

, �a

{
1√
logT

∫ T

0

dWs√
Xs

}

⇒�

(
0,

1
a − �

)
�

This establishes the first assertion. The second one is obtained in the same
manner using Proposition 4.

For the third case b = 0 and a = �, relation (15) yields

âT − a = logXT − log x∫ T
0

ds
Xs

�

The task is now to find the asymptotic behavior of logXT . By a scaling
argument the process (X2t/a) has the same distribution as a bidimensional
square Bessel process, starting from x , BESQ2

x . It follows that

X2T /a
law= ‖BT + x‖2 law= T ‖B1 + x/

√
T ‖2,
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626 Alaya and Kebaier

where (Bt)t≥0 denotes a standard bidimensional Brownian motion. Hence,
logXT / logT converges in law to one and consequently in probability. This
gives us the announced result.

For the case b > 0 and a = �, as in the above case we can rewrite the
error

âT − a = logXT − log x + bT∫ T
0

ds
Xs

�

Now, the CIR process (Xt) can be represented in terms of a BESQ2
x as

follows

XT
law= e−bTBESQ2

x

(
a
2b

(e bT − 1)
)
�

Since logBESQ2
x(T )/ logT converges in distribution to one, we

deduce that (logXT − log x + bT )/T converges in distribution to b and
consequently in probability. This gives our claim.

The only point remaining concerns the last case, b < 0 and a ≥ �. On
the one hand, according to the above representation in law of the CIR
process as a time changed BESQ2

x , we have the convergence in distribution
of logXT + bT to the logarithm of BESQ2

x(−a/2b). On the other hand,
since (

∫ t
0

ds
Xs
)t≥0 is an increasing process, we deduce the almost surely

convergence in the last assertion of Proposition 4. This completes the
proof. �

Remark. Note that the last assertion of the above theorem is consistent
with Theorem 2 v) of Overbeck,[22] where he proves that in the case a > 0
and b < 0 there is no consistent estimator of a.

4. NUMERICAL SIMULATIONS

Our aim in this section is to illustrate and test the practical behavior of
the estimators errors stated above. For this purpose, we need to generate
at time T > 0, the CIR XT , the so called Lévy area

∫ T
0 Xsds and

∫ T
0

ds
Xs
.

One way to do that is to use numerical schemes solving the SDE, like
the famous Euler scheme. However, any discretization scheme introduces
bias into the simulation results; an extensive discussion on this subject is
given by Kloeden and Platen.[17] Nevertheless, it is important to note that
the discretization of the the CIR process present some troubles because
of the square root in the diffusion coefficient. Several papers deal with
this problem, see for example Alfonsi,[1] Berkaoui, Bossy and Diop,[2] and
Deelstra and Delbaen.[6] However, the proposed schemes do not cover the
nonergodic case in all its generality.
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Parameter Estimation for Square-Root Diffusions 627

In the other hand, it is well known that the CIR XT is a non-central
chi-squared random variable that can be simulated exactly. Therefore,
Broadie and Kaya[3] propose an exact simulation of (XT ,

∫ T
0 Xsds) after they

compute the conditional Laplace transform of
∫ T
0 Xsds given XT . In our

context, we proceed analogously for the simulation of
(
XT ,

∫ T
0

ds
Xs

)
. For this

aim, we have to explicit also the conditional Laplace transform of
∫ T
0

ds
Xs

given XT . This result is established in the subsection below to be used then
in simulation.

4.1. On The Conditional Law of
∫ t

0 Xsds and
∫ t

0
ds
Xs

Given Xt

First, we give the conditional Laplace transform for the couple(∫ t
0 Xsds,

∫ t
0

ds
Xs

)
given Xt , t > 0, where (Xt)t≥0 denotes a BESQa

x process,

starting from x , solution to (2) with � = 2, namely dXt = adt + 2
√
XtdWt .

Theorem 3. For the square Bessel process introduced above, we have

�x

(
e−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs |Xt = y

)

=
√
2�t

sinh(
√
2�t)

exp
(
x + y
2t

[
1 − √

2�t coth(
√
2�t)

])

×
I�
(√

2�xy/ sinh(
√
2�t)

)
I

(√xy/t

) (16)

for all � ≥ 0 and � > 0, with � = √
(a − 2)2 + 8�/2 and 
 = a/2 − 1.

Proof. On the one hand, by taking � = 2 in equation (4), we deduce
that the fundamental solution to the PDE ut = 2xuxx + aux − (�x + �

x )u,

satisfying the relation �x

(
e−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs

)
= ∫ +∞

0 p(t , x , y)dy, is given by

p(t , x , y) =
√
2�

2 sinh(
√
2�t)

( y
x

)
/2
exp

(
−

√
2�
2

(x + y) coth(
√
2�t)

)

I�
(√

2�xy/ sinh(
√
2�t)

)
�

On the other hand, by conditioning we rewrite

�x

(
e−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs

)
=

∫ ∞

0
�x

(
e−�

∫ t
0 Xsds−�

∫ t
0

ds
Xs |Xt = y

)
pXt

(y)dy,

where pXt
= 1

2t (
y
x )


/2 exp( x+y
2t )I
(

√xy/t) is the density of the Bessel process
starting from x . The result follows by identification. �
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628 Alaya and Kebaier

Remarks. Here we comment the above result, in order to situate it and
compare it with some known ones.

• From a probabilistic point of view, since we compute the conditional
law of the couple instead of the marginal ones, Theorem 3 extend both
formulas (6.5.2) and (6.5.3) of Proposition 6.5.1.1 p. 373, stated for
a ≥ 2, in Jeanblanc, Yor and Chesney.[14]

• It is worth to note that, in the case a < 2, when � tends to 0, we do
not track down the marginal Laplace transform, since

∫ t
0

ds
Xs

is not finite
almost surely. Indeed, in the general case a > 0, this marginal Laplace
transform is given by formula (2.m) page 432 of Pitman and Yor,[24]

namely

�x

(
e−�

∫ t
0 Xsds |Xt = y

)

=
√
2�t

sinh(
√
2�t)

exp
(
x + y
2t

[
1 − √

2�t coth(
√
2�t)

])

×
I

(√

2�xy/ sinh(
√
2�t)

)
I

(√xy/t

) (17)

for all � ≥ 0, with 
 = a/2 − 1.

Now, we return to the general CIR process, starting from x , solution to
(1), namely dXt = (a − bXt)dt + √

2�XtdWt and we use the above result, to
derive the following conditional laws.

Theorem 4. For a CIR process solution to (1), on the one hand, we have for
� ≥ 0

�x

(
e−�

∫ t
0 Xsds |Xt = y

)
= �(�)

b
sinh(bt/2)

sinh(�(�)t/2)

× exp
(
x + y
2�

�b coth(bt/2) − �(�) coth(�(�)t/2)�
)

I

(
�(�)

�

√xy/ sinh(�(�)t/2)
)

I

(
b
�

√xy/ sinh(bt/2)
) , (18)

with �(�) = √
b2 + 4�� and 
 = a

�
− 1. On the other hand, we have for � > 0

�x

(
e−�

∫ t
0

ds
Xs |Xt = y

)
= I�(�)

(
b
�

√xy/ sinh(bt/2)
)

I

(
b
�

√xy/ sinh(bt/2)
) (19)

with �(�) = √
(a − �)2 + 4��/� and 
 = a

�
− 1.
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Parameter Estimation for Square-Root Diffusions 629

Proof. Let us define the process Yt = X2t/�, by a scaling argument, we
have

dYt = (� − �Yt)dt + 2
√
YtdWt , Y0 = x ,

with � = 2a
�
and � = 2b

�
. We now write the Laplace transform

�x

(
exp

(
−�

∫ t

0

ds
Xs

)
|Xt = y

)
= �x

(
exp

(
−2�

�

∫ �t/2

0

ds
Ys

)
|Y2t/� = y

)
�

Thanks to the change of law formula (6�d) of Pitman and Yor,[24] we get

�x

(
exp

(
−�

∫ t

0

ds
Xs

)
|Xt = y

)

=
�x

(
exp

(
− 2�

�

∫ �t/2
0

ds
Rs

− b2

2�2

∫ �t/2
0 Rsds

)
|R2t/� = y

)
�x

(
exp

(
− b2

2�2

∫ �t/2
0 Rsds

)
|R2t/� = y

) ,

where (Rt)t≥0 is a BESQ2a/�
x process. In the same manner

�x

(
exp

(
−�

∫ t

0
Xsds

)
|Xt = y

)

=
�x

(
exp

(
−( 2�

�
+ b2

2�2 )
∫ �t/2
0 Rsds

)
|R2t/� = y

)
�x

(
exp

(
− b2

2�2

∫ �t/2
0 Rsds

)
|R2t/� = y

) �

We complete the proof, by combining relations (16) and (17) with the last
two equations. �

4.2. Numerical Results

The task now is to check the validity of the results obtained on our
estimators and to understand how fast the convergence actually takes place
as T → ∞, with computer simulations. By relation (14), the illustrations
of Theorem 1, about the MLE of b, involve the simulation of the couple
(XT ,

∫ T
0 Xsds). Therefore, we use the exact simulation method proposed by

Broadie and Kaya[3] to generate it. For Theorem 2, concerning the MLE of
a, we use relation (15) and we introduce a new exact simulation method
for the couple

(
XT ,

∫ T
0

ds
Xs

)
based on the theoretical results of the above

subsection.
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630 Alaya and Kebaier

4.2.1. The MLE of b
The method of Broadie and Kaya[3] is to simulate, at first, the random

variable XT with a noncentral chi-squared distribution

XT
law= �(1 − e−bt)

2b
�

′2
2a
�

(
2be−bt

�(1 − e−bt)
x
)
, t > 0 (20)

where �
′2
d (nc) denotes the noncentral chi-squared random variable with

d degrees of freedom and noncentrality parameter nc . The second step
is to deduce the conditional characteristic function, say �, of

∫ T
0 Xsds

given XT by setting � = −iu,u ∈ �, in relation (18). Then, the cumulative
distribution function F of the conditional law is computed using Fourier
inversion method. More precisely, we have

F (x) = 1
�

∫ +∞

−∞

sin(ux)
u

�(u)du = 2
�

∫ +∞

0

sin(ux)
u

Re ��(u)� du�

This integral is approximated, using a trapezoidal rule with step
discretization h, by an infinite sum that is truncated to an order N , namely

F (x) � hx
�

+ 2
�

N∑
j=1

sin(hjx)
j

Re ��(hj)� �

The choice of parameters h and N to achieve a desired accuracy is
well explained in their paper. Nevertheless, they draw attention to the
continuity problem in the numerical representation of the modified Bessel
function of first kind, with a complex argument, that appears in the
numerator of the characteristic function �. In fact, the modified Bessel
function of first kind characterized by the following power series

I
(z) =
(
z
2

)
 ∞∑
j=0

(
z2

4

)j

j !�(
 + j + 1)
,

where �(x) is the gamma function and z is a complex number, presents
a discontinuity problem in the representation of the power term z
.
Because this last function is multivalued and most of software packages
consider it equal to exp(
 log(z)), where log(z) is computed on the
principal branch of arg(z). To avoid this difficulty, Broadie and Kaya
carefully tracked arg(z) when evaluating I
(z) and changed the branch
when necessary by I
(zem�i) = em
�i I
(z), where m is an integer value.
Recently, Lord and Kahl[21] showed how to avoid this complex discontinuity
problem. They considered, up to a scaling coefficient, the complex-
valued argument in the modified Bessel function, z(u) = �(u)/ sinh(�(u)t),
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Parameter Estimation for Square-Root Diffusions 631

where �(u) = √
b2 − 4�iu and evaluated the characteristic function

as �(u)e 
 log(z(u))/z(u)
, where �(u) and z(u)
 are evaluated using
the principal branch, however, log (z(u)) is evaluated as −�(u)t/2 +
log

(
�(u)/(1 − e �(u)t)

)
, the last logarithm term is evaluated on its principal

branch. This correction term introduced by Lord and Kahl[21] improves
considerably our simulations.

The graphical representations of Figure 1 illustrate the limit law of
the MLE b̂T of b, stated in Theorem 1. In order to do that, we simulate
N independent trajectories of the normalized error, with different values
of parameters (x , a, b, c ,T ) to cover the various cases, and we plot their
histogram. When the limit is Gaussian, we normalize the error by the
appropriate term to compare the histogram with the standard Gaussian
density. Otherwise, since we do not have an explicit formula of the limit
law density, we simply plot the histogram of the error as stated in the
theorem. Both histograms, on the top of Figure 1, deal with ergodic and
nonergodic cases, for b > 0. Those at the bottom, treat the cases b = 0 and
b < 0. Note that in the latter cases, we choose a < � to cover the subtle
case when the CIR can reaches the state 0.

FIGURE 1 Convergence in distribution of the error, b̂T − b, correctly normalized, in different
cases, for a sample N = 10000, from the left to the right, we have (x , a, b, �,T ) equal to
(1, 2, 1, 1, 1e + 3), (1, 0�5, 1, 1, 1e + 3), (1, 0�75, 0, 1, 1e + 2) and (1, 0�75,−1, 1, 12).

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
Pa

ri
s-

N
or

d-
B

 U
 S

ci
en

ce
s]

, [
A

hm
ed

 K
eb

ai
er

] 
at

 0
4:

15
 1

2 
N

ov
em

be
r 

20
12

 



632 Alaya and Kebaier

Remark. From a practical point of view, note that when the theoretical
rate of convergence is of order T (resp. T 2) the limit distribution is
well approximated from T = 1e + 3 (resp. T = 1e + 2). However, when
the theoretical rate of convergence is exponential then a stabilization is
observed only from T = 12 (see Figure 1).

4.2.2. The MLE of a
We proceed to simulate the couple

(
XT ,

∫ T
0

ds
Xs

)
in the same manner

as below. First, we begin by generating a random variable XT using the
property (20). Then, in order to simulate

∫ T
0

ds
Xs
, we use relation (19) to

compute the cumulative distribution function of the conditional law. To
do that, we use the Fourier inversion method introduced previously.

The graphical representation below illustrates the limit law of the MLE
âT of a stated in Theorem 2. We simulate N independent trajectories of
the correctly normalized error, as explained in the subsection above, and
we plot their histogram. Both histograms, on the top of Figure 2, deal with
ergodic and nonergodic cases, for a > �. Those at the bottom treat cases
b > 0 and b = 0, for a = �.

FIGURE 2 Convergence in distribution of the error, âT − a, correctly normalized, in different
cases, for a sample N = 10000, from the left to the right, we have (x , a, b, �,T ) equal to
(1, 2, 0, 1, 1e + 100), (1, 2, 1, 1, 1e + 3), (1, 1, 0, 1, 1e + 50) and (1, 1, 1, 1, 1e + 2).

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
Pa

ri
s-

N
or

d-
B

 U
 S

ci
en

ce
s]

, [
A

hm
ed

 K
eb

ai
er

] 
at

 0
4:

15
 1

2 
N

ov
em

be
r 

20
12

 



Parameter Estimation for Square-Root Diffusions 633

Remark. In this case, note that when the theoretical rate of convergence
is of order

√
T (resp. T ) the limit distribution is well approximated

from T = 1e + 3 (resp. T = 1e + 2). However, when the theoretical rate of
convergence is of order

√
logT (resp. logT ) then to observe a stabilization

T = 1e + 100 (resp. T = 1e + 50) was needed (see Figure 2).

5. CONCLUSION

The precise description of the behavior of
∫ T
0 Xsds and

∫ T
0

ds
Xs

established in the present article provides a new approach to overcome the
problem of parameters estimation for the CIR model in all its generality.
When we estimate one of the drift parameter and suppose known the other
one, we obtain original results that are confirmed by exact simulation
methods. A natural question is now the problem of the global estimation
for the CIR model. Answering this question involves more complicated
calculations and this is the object of a forthcoming work.
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