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PROBABILISTIC APPROXIMATION OF A 
NONLINEAR PARABOLIC EQUATION 
OCCURRING IN RHEOLOGY 

MOHAMED BEN ALAYA,* Universit? Paris 13 

BENJAMIN JOURDAIN,** CERMICS 

Abstract 

In this paper we are interested in a nonlinear parabolic evolution equation occurring 
in rheology. We give a probabilistic interpretation to this equation by associating a 

nonlinear martingale problem with it. We prove the existence of a unique solution, P, 
to this martingale problem. For any t, the time marginal of P at time t admits a density 

p(t, x) with respect to the Lebesgue measure, where the function p is the unique weak 

solution to the evolution equation in a well-chosen energy space. Next we introduce a 

simulable system of n interacting particles and prove that the empirical measure of this 

system converges to P as n tends to oo. This propagation-of-chaos result ensures that 

the solution to the equation of interest can be approximated using a Monte Carlo method. 

Finally, we illustrate the convergence in some numerical experiments. 

Keywords: Nonlinear martingale problem; propagation of chaos; stochastic particle 
method 

2000 Mathematics Subject Classification: Primary 60K35; 60F99; 65C35 

1. Introduction 

In rheology, modeling the flow of complex fluids is a very intricate problem which to date is 
far from being solved. H?braux and Lequeux [4] presented a model which aims at describing 
the behavior of very concentrated suspensions of soft particles, known as soft glassy materials, 

under a simple shear flow. This model is obtained by dividing the material into a large number 
of mesoscopic elements ('blocks') with a given shear stress. From a mathematical point of 

view, the probability density, p(t,x), for a block to undergo stress x at time t is supposed to 

satisfy the following evolution equation: for all (t, x) e [0, T] x R, 

^(t, x) = -b(t)^(t, x) + D(p(t))^(t, x) - l[-hl]c(x)p(t, x) + \D(p(t))8o(x), at dx dxz ol 

P>0, p(0,x) = po(x). 
(1) 

Here, for / e Ll(R), we define 

a2 f 
D(f):=-- f(x)dx, cr>0, 2 J\x\>\ 
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l[-i,i]c denotes the characteristic function of the open set [?1, l]c 
? 

(?oo, 
? 

1) U (1, oo), ?o 

denotes the Dirac delta distribution on R, and po is a probability density on the real line. Let 
us make precise the physical interpretation of the above equation. When a block is sheared, 

the stress of this block evolves with a variation rate bit). This variation rate is proportional to 
the shear rate but does not depend on the value of the stress. In our study, the function b is 
assumed to be in L2([0, T]). When the modulus of the stress overcomes the critical value of the 

stress, chosen to equal 1 here, the block becomes unstable and may relax into a state with zero 

stress after a characteristic relaxation time also chosen to equal 1. This phenomenon induces a 

rearrangement of the blocks modeled through the diffusion term Dipit))d2pit, x)/dx2. 
Motivated by the physical interest of this model, Canees et al. [2] have studied the existence 

and uniqueness of solutions to (1). From an analytic point of view, the difficulty of this study 
comes from the possibility that the coefficient, Dip it)), of the second-order spatial derivative 

might vanish. In the case in which the initial density po satisfies D (po) > 0 (and under regularity 
assumptions made precise in Theorem 1, below), Canees et al. [2] were able to control the time 
evolution to this multiplicative coefficient and prove that (1) admits a unique weak solution p 
in a well-chosen energy space, this solution being such that 

inf Dipit)) > 0. (2) 
te[0,T] 

By a weak solution we mean an integrable function p : [0, T] x R -> R such that, for any C1,2 
function \/f with compact support on [0, T] x R, for all t e [0, T], 

I \?rit, x)pit, x)dx = / \/fiO,x)poix)dx 
Jr Jr 

r ( df df d2?\ + / [P^+bp^ + D?p)p-^)is,x)ds?x J[0,t]xR\ ds dx dxz J 

+ 
/ h\x\>\}Pis9 x)ifis, 0) 

- 
fis, x)) ds dx. 

J[0,t]xR 

For a mathematical study of the full model obtained by coupling (1) at the microscopic level 
with the conservation of the momentum at the macroscopic level, we refer the reader to 

Canees et al. [3]. 

In this paper we are interested in constructing and proving the convergence of some Monte 

Carlo approximations of the solution p. For this purpose, we first associate a nonlinear 

martingale problem with (1). Let ?>([0, T], R) be the space of functions on [0, T] that are right 
continuous and have left-hand limits. We denote by X the canonical process on ?)([0, T], R). 

Definition 1. We say that a probability measure P on D([0, T],R) with time marginals 
iPt)o<t<T solves the nonlinear martingale problem (MP) if Poidx) = poix)dx and, for all 

4> e C?iR), 

4>iXt) - 0(XO) - 
f 

(bis)(/)fiXs) + 
YP??~h iW^)) 

d* 

r 
i4>i0)-<l>iXs))l{lxs\>\}ds 

Jo 

is a P-martingale on the time interval [0, T]. 
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This problem is nonlinear since (a2/2)Ps([?l, l]c), the diffusion coefficient at time s, 
involves the time marginal Ps of the solution. 

If P solves problem (MP) then, according to Lemma 2(i) below, for all \?r e Cb' ([0, T] x IR), 

?* {d\lr d? a1 c d2f \ x?f(t, Xt) - VKO, Zo) - 
J lj^(s, 

Xs) + 
b(s)-?(s, 

Xs) + y fttt-1, 
1]c)j^(s, XS)J 

ds 

- 
f W(s,0)-xlr(s9Xs))l[lXs\>i}ds 
Jo 

is a P-martingale on the time interval [0, T]. From the constancy of the expectation of this 

martingale, we deduce the following link between problem (MP) and (1). 

Lemma \.IfP is a solution to the nonlinear martingale problem (MP), then t h-> Pt is a weak 
solution to the partial differential equation (1). 

In the first section of the paper we prove that problem (MP) admits a unique solution P and 
that, for any t e [0, T], Pt(dx) = p(t, x) dx, where p is the solution to (1) obtained by Canees 
et al. [2]. Then, in the second section, we introduce the following system of n interacting 
particles obtained by replacing the nonlinearity by an interaction in the stochastic dynamics 
associated with the nonlinear martingale problem: 

y>" = y? + 
*? i?W?|>I)vid^ 

+ 
^(,)d,-^V-y1?|>1)dyvi) 

1 < i < n. 

Here (Wl)\<i<n are n independent Brownian motions, (Nl)\<i<n are n independent Poisson 

processes with (common) intensity 1 and (?q)i<?<? are n independent random variables with 

(common) density po(dx). We assume that (Wl)\<i<n, (Nl)\<i<n, and (?q)i<?<? are indepen 
dent. We now face the probabilistic counterpart of the possibility that D(p(t)) might vanish: 
the empirical probability (l/n) YTj=\ l/iW'"i of the set [?1, l]c may be equal to 0. This is 

why we take the supremum of this empirical probability with l/n in the diffusion coefficient of 
each particle in order to ensure the existence of a unique weak solution to this ̂-dimensional 
stochastic differential equation. We prove a propagation-of-chaos result which ensures that 

p(t, ), the solution to (1), can be approximated by (l/n) J21=\ <V> 
' > indeed, we prove that the 

?P(D([0, T], R))-valued empirical measure (l/n) X^/Li ^Y^n converges in probability to P, the 

unique solution to problem (MP). In the mathematical analysis of the convergence, the main 

difficulty is that l/n, the lower bound of the diffusion coefficient in the system with n particles, 
vanishes as n -+ oo. To overcome this difficulty, we first prove convergence on a small time 

interval. Then, to iterate the argument, we take advantage of (2), which holds for the solution 
to (1) given that D(p0) > 0. 

In the third section we present some numerical results obtained by simulation of the system 
with n particles. 

We use the following notation. 

For r > 0, let Lf?([0, z], h\ D L2X) denote the space of real-valued functions / defined 
on [0, r] x M and satisfying 

SUP / |/(i, A:)|d;c < oo and sup / \f(t, x)\2 dx < oo. 
te[0,T]JR f [0,r] JR 
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By L2i[0, r], H^), we denote the space of functions / on [0, r] x R such that the 
distribution derivative df/dx is a function and 

? (\fit,x)\2+ %-it,x) /0 JR\ d* 

We say that a probability density po satisfies the condition (//) if 

Jo 
dx dt < oo. 

/ Jm 
po e L??(R), / \x\poix)dx <oo, and D(p0) > 0. 

Let C be a constant which may change from line to line. 

For a topological space E, ?PiE) denotes the set of probability measures on E endowed 
with its Borel a-field. 

2. Existence and uniqueness of the martingale problem 

2.1. On equation (1) 

We now recall existence and uniqueness results for (1) established in Theorem 1.1 of [2]. 

Theorem 1. Let the initial density po satisfy the condition (//). Then, for every T > 0, there 
exists a unique weak solution p to the system (I) in Lf?i[0, T], L\ D L2) C\ L2i[0, T], H?). 

Moreover, for all t e [0, T], fR pit, x) dx = 1 and there exists a positive constant v such that 

2 
-^ Dip it)) > v for all t e [0, T]. (3) oL 

In addition, 

sup / |jc|p(i, jc) djc < oo. (4) 
re[0,7] Jr 

Since, for a > 1, denoting ||/||L2 = ifR f2ix) dx)1/2 for all square integrable real func 
tions f, 

/ pit,x)dx < 2Va 
- 1 sup \\pit, -)\\Li, 

J[-a-l]U[\,a] t<T 

we easily deduce the following corollary. 

Corollary 1. There exists an a > 1 satisfying 

/ pit,x)dx > - 
for all t e[0,T]. 

J\x\>a 2 

2.2. Main results 

Theorem 2. Assume that po satisfies condition (//). The nonlinear martingale problem (MP) 
admits a unique solution P. In addition, for all t G [0, T], pit, ) is a density of the time 

marginal Pt with respect to the Lebesgue measure on R. 

For the reader's convenience, the rather technical proof of the following proposition, which 
ensures that the last statement holds, is postponed to Section 2.3. 
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Proposition 1. Assume that po satisfies condition (H). If P solves the martingale prob 
lem (MP), then, for all t e [0, T], Pt admits p(t, ) as a density with respect to the Lebesgue 

measure. 

In order to deduce Theorem 2 from Proposition 1, we need to introduce a linear martingale 
problem. 

Definition 2. Let a be a nonnegative function. We say that a probability measure P on 

D([0, T], R) solves the linear martingale problem (LMP) starting at ? g P(R) if P0 = ^ 

and, for all 0 e C?(R), 

0(X?)-0(Xo)- f (b(s)<p'(Xs) + a(s)(l)"(Xs))ds- ? (0(0) - <KXs))l[lXs\>\) & 
Jo Jo 

is a P-martingale on [0, T]. 

On a probability space (Q,A,P), let (Wt)t>o be a Brownian motion and (Nt)t>o an 

independent Poisson process with intensity 1. The stochastic differential equation associated 
with the linear martingale problem (LMP) starting at X is 

Yt = Y0+ [ y(s)dWs + f b(s)ds- j Ys-l{\Ys-\>i}?N5 (5) 
Jo Jo Jo 

where y(s) 
? +J2a(s), Yo is distributed according to X, and Yq, (Wt)t>o, and (Nt)t>o are 

independent. It is clear that existence and trajectorial uniqueness results hold for this stochastic 
differential equation. 

From [6, Theorems I Ig and I In and Corollary //13], we deduce the first assertion in the 

following lemma. 

Lemma 2. (i) For any X e P (R), the distribution of the unique solution to (5) is the unique 
solution to the linear martingale problem (LMP) starting at X, say P. 

(ii) If in addition, X(dx) ? f(x) dx with f e L2(R) and there exists an interval [0, r], r > 0, 
such that on [0, r] the function a is bounded from below by a positive constant, then, for all 
t e [0, r], Pt has a density p(t, x) with respect to the Lebesgue measure and the function p 
belongs to L??([0, r], h\ H L2X) n L2([0, r], H?). 

The proof of the remaining assertion is postponed to Section 2.3. 

Proof of Theorem 2. Let us suppose that Proposition 1 holds, and let P and Q denote two 
solutions to the nonlinear martingale problem (MP). Then both P and Q solve the linear 

martingale problem (LMP) with diffusion coefficient a(s) = D(p(s)), starting at X(dx) ? 

po(x) dx. Since uniqueness holds for this linear martingale problem, P ? Q, and uniqueness 
holds for the nonlinear martingale problem (MP). 

We still have to prove existence for the nonlinear martingale problem (MP). Let P be the 
solution to the linear martingale problem introduced above. By (3) and Lemma 2(ii) above, for 
all t in [0, T] the probability distribution Pt admits a density p(t, ) with respect to the Lebesgue 
measure and the function p belongs to L??([0, T], Lx H L2X) n L2([0, T], H*). Moreover, by 
reasoning as in the proof of Lemma 1, we find that p is a weak solution to the linear partial 
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differential equation 

dp dp d2 
-?-(t,x) 

= 
-bit)-fit,x) +ait) 

at dx oxL 

P 2 
yit,x) 

- 
l[-i,i]cWp(/^) + -?DipitWoix), 

piO,x) = poix). 

As p satisfies (1) and ait) = Dipit)), p also satisfies the above linear partial differential 

equation. Now, by adapting the ideas of Canees et al. [2] in the proof of uniqueness for (1), 
we shall prove that p = p. By subtracting the equation satisfied by p from the one satisfied 

by p, we find that q ? p 
? 

p satisfies the same equation with initial condition g(0, x) = 0. 

Multiplying this equation by q and integrating over R with respect to x, we formally obtain 

1 d 
2dt / q2it,x)dx+ait) / (?(*,*)) dx + / q2it, x) dx = -^Diqit))qit, 0). (6) 

JR jR\dx ) J\A>X Oz 

Because of the regularity of the functions p and p, this formal computation is rigorous. We 
next remark that, since fR pit, x) dx = fR pit, x) dx = 1, we obtain 

\Diqit)) rr z / qit,x)dx 
\J\x\<\ 

J2\\qit,-)\\L 

from the Cauchy-Schwarz inequality. Let Hl(M) denote the space of functions / on the 
real line square integrable together with their distribution derivative f, endowed with norm 

||/||^i 
= 

Jfmif2ix) + if')2ix))dx. Moreover, using the Sobolev embedding of Hl(R) 
into the space of continuous, bounded functions on R endowed with the supremum norm, we 

bound the term on the right-hand side of (6) from above in the following way, for any positive 
constant s: 

:Diqit))qit,0) C\\qit,-)\\L2\\qit,-)\\Hi 

C2\\qit,.)\\2L2 ? 

is '+2?*('' Hi? dx qit, ) 
Ll 

Since, by Theorem 1, info<t<T aiO > 0, we may choose e/2 < info<i<r^(0 and deduce 
from (6) that 

1 d. (C2 

Finally, by applying Gron wall's lemma, we find that \\qit, -)ll^2 
= 0, for all? G [0, 7] and, thus, 

that q = 0. This ensures that ait) = Dipit)). Therefore, F solves the nonlinear martingale 
problem (MP). 

2.3. Proofs of technical results 

Proof of Lemma 2(ii). By Lemma 2(i), it is enough to consider the stochastic differential 

equation (5). For n e N*, let Tn 
? 

inf{r > 0: Nt = n}. The conditional distribution of 

iT\, ... ,Tn) given {A^r 
= 

n] is uniform on the ?-dimensional simplex An 
= 

{0 < t\ < < 

tn < t}. Let Qsj be the density of the random variable f y(r) dWr + fs b(r) dr. Since A^ is 

independent of (Yq, W), for n e N the conditional density, pnit, y), of Yt given {Nt = n} may 
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be computed by induction on n. For t > 0 and y e R, we have po(t,y) 
? 

f * Qo,t(y) and, 
for all n > 1, 

Pn(t,y)= / / ??-Pn-\(s,x)[l{\x\<\}Qs,t(y-x) + h\x\>i}Qs,t(y)]dxds. Jo Je t 
In order to bound the norm of 

00 tn 
p(t,y) = 

Ve_/-^(ij) 
w=0 

in Hx and, in particular, to estimate the norm of dp/dy in L2, the Fourier transform is a very 
convenient tool. 

Setting pn(t, ?) = fR^ypn(t, y)dy, wehave?0(?, ?) = f(?)Qo,t(0 and, for all n > 1, 

ft 
r nsn~l 

Pn(t,0= / / 
?? 

^-i(^^)[l{|x|<i}e1^?,,i(0 + l{|x|>i}?,,/(0]^^. Jo Jm ? 

Assume that the function y2 is bounded from below by e > 0. Since, for s < t, \Qs,t(K)\ < 

exp{ 
? 

(?2/2)e(t 
? 

s)}, we have 

.2 

\po(t, 01 < 1/(01 
expj-^i 

n /" Z1 - 2n(l -exp{-(r2/2)6:i}) 
t Jo Jr tt;le 

To check that p belongs to Lf?([0, r], L2), we combine the Parseval-Plancherel theorem with 
the bounds on the modulus of the Fourier transform given before, obtaining 

2rt 
f p2(t,y)dy<Ye-t- [ \pn(t, t)\2 d? 
Jr ̂ 

nl JR 

t?- 9 ^ ttn f 4n2(l-exp{-(?2/2)et})2 

Jr ~ nl Jm n? 
00 

^ 4 
2 / 

Q _ 
e-x2/2\2 < 

2^'||/||22+?>"'-? / 
^-'-dx. 

As the right-hand side is bounded uniformly if t belongs to [0, r], it follows that p e L^?([0, r], 
L2). To check that p belongs to L2([0, r], H?), we note that (dp/dy) (t, ?) = i?p(t, ?) and 
we write 

2n f ? 1?^?) dfd^= f [ n?(t,S)\2dtdc 
Jo Jr Ioy Jo Jr 

^?r f e~'-.S2\Pn(t,0\2atdc 

< 
f j f2e-'e-f2"|/(OI2didf 
Jo Jr 

^io Jr ?! i2 ?2?2 ?=i 
' 
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Setting C = /M((l 
? e x 

^2)/x)2 dx, the change of variable x = ?^f?t yields 

271 ? f l?^ did^< / r?2e^2fi?d?|/(f)l2df Jo Jr I ^ Jr Jo 

+ f; JCn [\-<t*-W?t. 
^eWin-DlJo 

Using the fact that /0r e-'*71"3/2 df < r""1/2/^ 
~ 

1/2), we conclude that/? g L2([0, r], H?). 

We are now ready to prove Proposition 1. 

Proof of Proposition 1. To obtain this result we proceed by inductive reasoning. The idea is 
to build a positive, increasing sequence 0 < t\ < < tjc 

? T such that, for k G {1, ..., K], 
we are able to prove the following property: for all t G [0, tk], the marginal distribution Pt has a 

probability density pit, ), and (/?(*, -))o<t<tk belongs to Lf??([0, tk], L]nL2)nL2([0, tk], H*). 
Since, by Lemma 1, p is a weak solution to (1), by the uniqueness result in Theorem 1, 
ipit, -))o<t<tk can then be identified with the restriction of p to the time interval [0, tk]. 

Let a be such that the conclusion of Corollary 1 holds, and let K g N* be such that 

T/K < Ha 
- 

l)/2\\b\\L2)2. We set tk = kT/K, ke{l,...,K). 

As a first step, we use the fact that if Yq is distributed according to the density po, then, 
by Lemma 2(i), P is the distribution of the solution to the stochastic differential equation 

Yt = Y0+ [ oJPsil-hmdWs+ f bis)ds- f Ys-l{lY_i>i}dNs. 
Jo Jo Jo 

Let t g [0, ?i]. Since t\ < Ha 
- 

\)/2\\b\\L2)2, we have f? \bis)\ds < \\b\\L2Vt < 

ia 
? 

l)/2. Therefore, 

Ptii-um 

>p(ir0| >a, Nt =o, r0 + 

> e 

& [ y/Psi[-l,l]c)dWs+ f bis)ds\ > 1 ) Jo Jo I / 
1 
f poix)dxp(\o [' y/Psi[-l,l]c)dWs <a-l- ? \bis)\ds) J\x\>u VI Jo Jo / 

:/' r Jo 

ve /-(?-iV^Vi x2/2 > -t= I e~x ' dx, il) 
fin 

by Corollary 1. 

Therefore, the diffusion coefficient, ait) = 
(a2/2)Pr([?1, l]c), of the martingale 

problem satisfied by P is bounded from below by a positive constant on the time 
interval [0, t\\. From Lemma 2(h), we deduce that, for all t G [0, ?i], Pt has a density 
pit, ) with respect to the Lebesgue measure on R and that the function p belongs to 

Lf?([0, ij], L\ H L2) H L2([0, t\},H?). On the other hand, by Lemma 1, p is a weak 
solution to (1). From Theorem 1 we deduce that, for t g [0, t\], pit, ) = pit, ). 

Now we assume that the inductive assumption is true at order k? \, k e {2, ..., K}, and 

show that this property remains true at order k. The image, P, of P under the mapping 
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x e D([0, T], R) t-> 
(xt^tk-i)te[0,tk-tk^i] solves the nonlinear martingale problem on 

the time interval [0, tk 
? 

ft-i] with the initial probability distribution Fo = Ptk-\ Now, 

Po([~h If) > / p(tk-x,x)dx = / p(tk-i,x)dx > V-, 
J\x\>a J|x|>a 2 

by Corollary 1. From computations similar to the ones made in the first step, we find 

that, for t e [0, ft 
? 

tk-i], Pt([?l, l]c) is greater than the right-hand side of (7). Again 
we deduce from Lemma 2(h) that, for t e [0, tk 

? 
ft-i], Pt has a density p(t, ) 

and the function p belongs to Lf?([0, tk 
- 

ft_i], Lxx n L2) n L2([0, ft 
- 

ft_i], H?). 
By putting all this material together, we conclude that, for all t e [0, tk], Pt has a 

density p(t, ), and (p(t, -))o<t<tk belongs to L??([0, ft], L? n L2) n L2([0, ft], H?). 
Moreover, (p(t, -))o<t<tk can be identified with the restriction of p to the interval [0, ft]. 

This concludes the proof. 

3. Propagation of chaos 

We define a system of n interacting particles using the following stochastic differential 

equation: 

f = Y?+o? ^?l{(^ 7 = 1 

1 < i < n. (8) 

Here (Wl)\<i<n are independent Brownian motions, (Nl)\<i<n are independent Poisson pro 
cesses with (common) intensity 1, and (Yl0)\<i<n are independent random variables distributed 

according to po(x) dx. We assume that (Wl)\<i<n, (Nl)[<i<n, and 
(Y?)\<t<n 

are independent. 
Between the jump times of the Poisson processes, (F1", ..., Yn,n) evolves as an ^-dimensional 

diffusion process with a piecewise-constant (in the n -dimensional spatial variable) and non 

degenerate diffusion matrix. Hence, according to [1] and [9, Exercise 7.3.2], existence and 

uniqueness in law hold for (8). 
Let ?n = (l/n) Y?i=\ ^Y^n denote the empirical measure of the particle system. We are 

going to prove the following law of large numbers. 

Theorem 3. Assume that po satisfies condition (H). As n tends to oo, the ?P(D([0, T], Re 
valued random variables \in converge in probability to P, the unique solution to the nonlinear 

martingale problem (MP). 

Since the particles Yl,n, 1 < i < n, are exchangeable, according to [10, Proposition 2.2], 
this result is equivalent to the propagation of chaos: for any fixed k e W, as n goes to oo, 
the joint distribution of the processes (Yt ,n, ..., Yt ,n)t^[0,T] converges to P?k. In order to 

establish the theorem we need to control the possibility of the diffusion coefficient vanishing. 
This is why, for e > 0, we introduce the stopping time 

infji>0:-E1(ir/-|>i}<4 7 = 1 

Let 7tn denote the probability distribution of the empirical measure ?jj1. We will denote by Q the 
canonical variable on ?P(D([0, T], R)). The next lemma implies that if P(r^ < t) converges 
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to 0 as n tends to oo then any weak limit 7r?? of the sequence ?7tn)n has the following regularity 
property, which is desirable when taking the limit in the martingale problem formulation: 

7r??(dQ)-almost everywhere, dr-almost everywhere on [0, t], Qr does not weight the set of 

discontinuity points, { 
? 

1, 1}, of the characteristic function x i-> l{|jc|>i} which appears in the 
nonlinear diffusion coefficient, io2?2)Psi[? 1, l]c) = (a2/2)Ep(l{|x,|>i}), in problem (MP). 

Lemma 3. There is a constant C > 0 such that, for allt g [0, T] and all bounded functions f 
in L2(R), 

-(? 
Qs,f)ds <?||/llooP(T-?e<0 + C||/||L2, 

where ( , ) denotes the duality bracket between a measure and a function. 

The second technical lemma prepares an inductive argument as to why P(r* < T) tends to 0 
as n tends to oo. 

Lemma 4. For all a > 1 and all k > 0, there exist s > 0 and K e N* such that 

limsupP?r^ <k? 
) 
< 

Y]limsupPi?niT/Ki[-a, a]c) < k) for all k G {l,...,K}. (9) 

For the reader's convenience, the proofs of the above technical lemmas are postponed until 

after the proof of the theorem. 

Proof of Theorem 3. By exchangeability of the particles, the tightness of the sequence 
ixn)n>\ is equivalent to the tightness of the laws of the random variables (F1,w)w>i (again 
see [10, Proposition 2.2]). As the diffusion coefficient and the drift coefficient are uniformly 
bounded in n and the intensity of jumps remains smaller than 1, the tightness of the sequence 
iYx,n)n>\ holds (using the Aldous criterion, for instance). 

Let 7i?? be the limit of a convergent subsequence that we still index with n for notational 

simplicity. We are going to check that Q tc??-almost surely solves the martingale problem (MP). 
To do so, for p g N*, 0 g C^(R), g is a continuous and bounded function on Rp, and 

T>S>t>s>s\ > - > 
sp 

> Owe associate 

FiQ) = ( ?, ( 0(Xf) - <KXS) - 

j 
(birWiXr) + C?r([-1, l]c)0"(*r) ) dr 

r2 
2 

jf 
(0(0) 

- 
4>(Xr)) l[\xr\>i) dr \giXSl,..., XSp)\ (10) 

with any Q g ?P(D([0, S], R)). We want to prove that En (|F(g)|) = 0. By computing 
FijjJ1) using It?'s formula and then using the independence of the Brownian motions and 
Poisson processes, we can easily check that E(F2(/z")) < C/n. Therefore, 

C 
E"ni\FiQ)\) = E(|W)I) < VECFG^j2) < ?, (11) In 

where the constant C does not depend on n. Hence, E^ i\FiQ)\) converges to 0 as n tends to oo. 

Unfortunately, the mapping F is not continuous on ?P(D([0, T], R)) and we cannot deduce 
that En??i\FiQ)\) = 0. Nevertheless, F is continuous at any Q such that Qri{-1, 1}) = 0 
dr-almost surely. Thus, we should first prove that 7r?? gives full weight to such probability 
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measures. To do so, we need to bound the diffusion coefficient of the particle system from 
below. We are only able to obtain such control on a small time interval. For this reason we first 

consider the limit on such a time interval. Then, to iterate our reasoning, we take advantage of 

the bound 

Ps([-a,af)> s e [0, T], (12) 

which holds for some a > 1 according to Corollary 1 and Theorem 2. Applying Lemma 4 with 
this a and k 

? 
v/4, we deduce that we can choose e > 0 and K e N* such that 

lim sup P(< Sk1-) 
< V lim sup PU" ([-a,af) < - 

). (13) 

roo,k i Let7r??' *be the law of the image of ? under the restriction mapping (Ys)s< j e D([0, T], R) h? 

(Ys)s<kT/K ? D([0, kT/K], R) under jr00, and let Pk be the image of P under this mapping. 
We are going to prove, by induction on k e {0, ..., K}, that 7r??,k = 

8Pk. Since the initial 

variables F? are independent and identically distributed according to po(x) dx, the inductive 

property holds for k = 0. We then assume that it holds at order k ? 1 and show that it remains 
true at order k. 

From the recurrence assumption at order k 
? 

I, since under P the canonical process is 

quasi-left continuous, we can deduce that, for all s e [0, (k 
? 

l)T/K], ?jins converges weakly to 
Ps (see [7, Lemma 4.8]). Let (mn)n>\ and m be probability measures on R. It is well known 
that the weak convergence of (mn)n>\ to m implies that liminf?_>0Om?(0) > m(O) for all 

open sets O of R. This proves that {m e ?P(R) : m([?a, a]c) > v/4} is an open set for the 

topology of weak convergence. Thus, by (12), 

li 
MF^?niT/K([-a,a]c) 

> 
^j 

>P( PiT/K([-u,af) > - I = 1 for all e {0, ...,k- 1}. 

Then, by (13), limsup^^^ P(r^ < kT/K) = 0. From Lemma 3, we deduce that, for any 
continuous, bounded function / e L2(R), 

rkT/K 
E* \ I (Qr,f)dr *-u C||/||L2. 

Now let f^x) := max(0, 1 - |1 
- 

\x\\/rf) for 0 < n < 1. As H/^1^2 
= vWJ, if we 

replace / by fv in the equation above and we let n go to 0, we deduce that, 71??^-almost surely 
and dr-almost everywhere, Qr({?\, I}) =0. 

Let the parameter t in (10) be smaller than kT/K. Since F, considered as a function 
on ?P(D([0, kT/K], R)), is continuous at all points Q dr-almost everywhere satisfying 
?r({-l, 1}) = 0, we deduce from (11) that E"00'*(\F(Q)\) 

= lim^00E7r'7(|F(?)|) = 0. 
Hence, n oo,k 

8Pk, which concludes the proof. 

Let us now prove Lemma 3. 

Proof of Lemma 3. Let / be a nonnegative or nonpositive bounded function on the real line, 
and let/ e [0, T]. Then 

^(i' 
Qs,f)ds <i||/llooP(r??<r) 

?tE(1,I^',?/(y',")^ 
(14) 



Probabilistic approximation of a nonlinear parabolic equation 539 

Setting 

n,s ._ 
hr^>t}Or 

N 

i" i ^ 

7 = 1 

we introduce the stochastic differential equation 

vi,n,s __ vi 
?0 

~ 
*0' 

dY?^? =o^edW; +bit)dt-Ylt^?l{lYi,n,s>l} dNlt, 1 < / < n. 

Up to time r|, the processes iY?,n,?, 1 < i < n) and (F/'", 1 < i < n) coincide. This result, 
combined with the exchangeability of iYl,n,?)\<i<n, enables us to replace Y?,n by Yt 

,n,? in (14). 
We obtain 

En (Qs,f)ds <i||/llooP(rnfi<0 + E( / fiY?^?)ds (15) 

Now we are ready to apply the following estimation, which is a consequence of [5, Theorem 2]. 

Lemma 5. Let t < T, let i?js)s>0 be an (5^)-standard real Brownian motion, and let 

x + f Or d?r + / Jo Jo 
?ir)dr, se[0,t], 

where x G R, ? is a deterministic function integrable on [0, t], andor is an !Fr -adaptedprocess. 
Let us assume that there exist constants q_ and ? such that 0 < q_ < ? and a < ar < ? for all 

r G [0, t]. Then, for all f G L2(R), 

{['" 
)?s <C||/||L2, 

where the constant C depends only onq_, o, and T. 

Coming back to our process (Ys ,n,?)o<s<t> a simple decomposition of Ys 
,n,? 

on the subsets 

[N? 
= k}, k G N, with the use of the conditional distribution of the jump times of Nl given 

[Nj = k} yields 

fiY5l'n'e)ds E| / e-sfixZ>e*?)ds 

oo 

where 

+ E? E(fe-sf(x!-e-k)ds)ds k=l JQ<s\<"'<sk<t \Jsic / 

Kn^k = yln,e + f ?n.e dwl + ? fc(r) df. 
Jsk Jsk 

i dsk, 

with the convention that so = 0. 

Noticing that o^/s < o^? < oil + e), and applying Lemma 5, we deduce that, for all 

/ e L2(R), 

i(? 
f (Y}"**) as* 

Equations (15) and (16) together conclude the proof. 

<Ce' L2 (16) 
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Let us now prove Lemma 4. 

Proof of Lemma 4. Let a > 1 and k > 0. As in the proof of Proposition 1, we introduce a 
K eW such that T/K < ((a 

- 
l)/2\\b\\Li)2 and set tx = T/K. Let e = ?c?(h)/2, where 

?(t{) = 
pjjup 

\w?\ < 5!_i, ̂ = 
o). 

Let / denote the set of indexes {/ < n : | F? | > a}. If we decompose the event {r^ < ?i} on the 
event {card(7) < Kn} and its complement, we obtain 

P? 
< t{) < P(/xg([-(*, af) <k)+ P(card(/) > Kn, r?n 

< t{). (17) 

We are going to prove that the limit, as n -> oo, of the second term on the right-hand side of ( 17) 
is 0. Since 

$ \b(r)\dr < \\b\\L2</t\ 
= (a 

- 
l)/2, for j e I the existence of an s e [0, t\] 

such that | YsJ,n | < 1 implies that either N/{ / 0 or sup,<f] | f? a/2 dWrJ \ > (a 
- 

l)/2, where 

n2^1{|Fri>l}Vn' 
\ 7 = 1 

Therefore, the second term on the right-hand side of (17) is bounded from above by 

P card(/) >/c/?, ; luw ,n . rs nAUj, , 1wol > card(J) 
- ne I. 

7'e/ 
7 

On the other hand, considering the filtration 

% := a(F?, (WJ W, i</<?, (Ws = (W?,..., W?))s<t), t e [0, T] 

and the ̂r-martingale Mt := 
/q a" dWr, with Ar := 

/q (<x")2 dr and r? := inf {s : As > t}, by 
the Dambis and Dubins-Schwarz theorem [8, Theorem 1.6, p. 170] Bt := Mr/ 

= 
/0r' a/1 dWr 

is an Rw-valued $Tf-Brownian motion and f? a/2 dWr = B^. This implies that P(card(7) > 

Kn, r? 
< t\) is smaller than 

PI card(J) 
> Kn, y^li?w ,_ ._, . . 1wni > card(J) 

- ne ). I ?-^ (yV/.^Oor supj</ 1^7 |>(a_i)/2} 
w / 

\ 
j l / 

Noting that As <a2s, and by using the definition of s, we can replace the last upper bound by 

P| card(7) > Kn, -Y^l,^/ n ?/, , 1W^ <- ) 
V card(/) 

4-? K=o,suPs.5a2?ii^|<(a-i)/2} 
- 

2 / 

Now, as a(F?, (Nls)s<T, 1 < i < n) = fro c $>Tt, we deduce that (N?, s < 7\ 1 < / < n), 
(B?, s <T, I <i <n), and (Y?, I < i < n) are independent. With 3=b := cr(Y?, 1 < / < n), 
this probability reads 

ycaidV)^1^!^'* 
E( 

^caidC/^nlP^^^^ ^JV/i^sup,^ |B/|<(a-l)/2a) 
" 

2 
% 
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Using the Bienaym?-Chebyshev inequality, we obtain 

Plcard(7) 
^ 1{Nt\=o,suPsSn |a/|<(a-i)/2<7} 

?iti) 
H) < 

^(?Ocard?/) 

Finally, the second term on the right-hand side of (17) is smaller than 4/ic?iti )n and converges 
toO. 

Next we use induction on k G {1, ..., N} to establish (9). Since 

P? 
< ktx) < P? < ik 

- 
l)ti) + P(/4_1}il ([-a, cx]c) < *) 

+ P(/4-l)r, ([-a. <*]c) > k> (k 
- 

l)il < < < *il). 

assuming that (9) holds at order k ? 1 we have 

?-1 

limsupP(T?e 
< kt\) < ^ lim supP(/x"fl ([-a?, a]c) 

< k) 
n?t-oo ?_~ n-^oo 

+ limsupP(/x^_1)?i([-a, a]c) > k, ik 
- 

\)t\ < r? <kt\). 

With/ = {/ < n: \Yl(l 
we obtain 

(k-\)t\\ 
> a J ' ^ reasoning similar to that above for the time interval [0, t\ ], 

4 
:ard(/)- ] 

Jit?)i 
4 

Pi^k-m (["?. "I') >* (*- D?l < < < *'l) < 
E^cardi/)^ j8(fi)card(/) 

< 
K?ih)n 

which vanishes as ft goes to oo. 

From a physical point of view, the average stress, fR xpit, x) dx, is of particular interest. 
From Theorem 3 we can deduce the convergence of the particle approximation ( 1 ?n) Y^l=\ Y?,n 
to this quantity as n tends to oo. 

Corollary 2. Assume that po satisfies condition (//). Then 

1 
n 

r 
-V^ 

- 
/ xpit,x)dx 

n^ Jr 
lim E 

? = 1 

-0. 

Proof From Theorem 3, since under P the canonical process is quasi-left continuous, for 

any t G [0, T], ?jj? converges in probability to Pt = pit, x) dx as n tends to oo. We have 

\Ytl'n\<\Y?\+ f \bis)\ ds + 2o sup I f -?li|y^l>uv-d^ JO s<T\J0 x W f-f 
(|r* l>lj W 

\| 7 = 1 

Since the diffusion coefficient is bounded by 1 and the random variable \Yq | 4- f0 \bis)\ ds is 
A,n 

integrable, the random variables (| Yt 
' 

|)w>i are uniformly integrable. Combining this property 
with (4) and the convergence in probability of [int to Pt = p it, x) dx, we easily obtain the result. 
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4. Numerical results 

To check the validity of the results obtained in the previous section with computer simula 

tions, we consider the example of steady states given in [2]. According to [2, Proposition 5.1], 
if the function bit) = bis constant, then (1) admits a unique stationary solution in the following 
two cases. 

If 6 = 0 and a2 > l,then 

i-\x\ + Vd 
pix) = 

l{jcG[-i,i]}+-^-exp D 
M*#-l,l]}> 

with D = Dip) > 0 given by D + */D = (a2 
- 

l)/2. 

\fb t^O and o2 ? 0, then 

pix) = ax exp{y?Sgn(x)x}l{x^_M]} 

+ ( 02 ( 1 + exp 
lxl)-^exp{?x?) 

xe[-l,l]}, 

where sgn(x) denotes the sign of x, with ?? = b/2D =p \sl(b2 +4D)/D2, x+ = 

sup(0, x), and 

a\ 
? 

CL2 

2exp{yjb2+4D/D2)} 
o2i?- exp{b/2D} 

- 
?+ exp{-6/2D}) 

' 

2D?- exp{6/2D} 

o2bi?- exp{??/2?>} 
- 

?+ exp{-??/2D}) 
' 

This function always satisfies D = Dip) > 0, and the normalization condition 

/ pix) dx ? 1 
Jr 

reads 
D (!+?_) +(ft l)exp{-b/D] a*_ 

2 
' 

b ?- 
- 

?+exp{-b/D} 
For fixed n, we want to simulate n interacting particles described by the stochastic differential 

equation (8). In order to discretize time, we assign n particle positions iYlk?/K)\<i<n 
to each 

time kiT/K), 0 < k < K, where K is a given integer. Let {G\, 1 <i <n, 1 < k < K] and 

[Ulk, 1 
< i < n, 1 < k < K} be two independent sequences of independent and identically 

distributed random variables respectively distributed according the normal law and the uniform 
law on [0, 1]. At k = 0 we simulate n independent particles with initial density poix). For 
ke {1, 

vi,n 
IkT/K 

with 

K}, the discretized particles evolve as follows: for all / G {1, 

0 

Y(k-\)T/K+aD(k-W/K 

T 
ifi^V/*i>land^r/^ 

otherwise, 

A (k-i)T/K 

N 
(k-\)T/K l>H 
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Table 1: Convergence of sn with respect to n. 

?n 
n k=\00 k = 1000 

1000 0.0360 0.0369 
5 000 0.0158 0.0169 
10000 0.0116 0.0115 
20000 0.0080 0.0081 
40000 0.0058 0.0060 
60000 0.0046 0.0047 
80000 0.0040 0.0044 
100000 0.0036 0.0037 

Table 2: Convergence of nvar(r?) with respect to n. 

n nvm(T?) 

1000 0.5022943 
5 000 0.4662847 
10000 0.4844257 
20000 0.4435595 
40000 0.4628567 
60000 0.4513587 
80000 0.4543330 
100000 0.4840270 

The average stress in the physical model is given by r (t) = fR xp(t, jc) dx and it is approximated 
at the points kT/K, k e {0, ..., K}, by the empirical mean t^t,k 

= (l/n) X!? = i Ylk?,K. 
The simulation of 

^t/k 
^or K e (0, , ̂} must therefore confirm the convergence toward 

fR xp(x) dx as K and n tend to oo. 

4.1. Convergence with respect to n9 the number of particles 
Here we are interested in an example of the second type, namely steady states with b = 1 

and D = 0.5. We start from equilibrium, i.e. we choose po 
= 

p. We have 

/ Je 
xp(x)dx = 1.126734 8. 

We take T = 1 first with K = 100 then with K = 1000. We simulate M = 1000 independent 
realizations, (r?,n)i<j<M, of the random variable t[\ with different values of n. We consider 
the empirical mean, 

?n = ?y^\xJ{n- / xp(x)dx\, M r^? I Jk I 

of the absolute value of the difference between the stress tensor fRxp(x) dx and its particle 
approximation. In Table 1 we display results showing the convergence of the approximation sn 

ofE(|rf 
- 

JRxp(x) dx\) toO disnttndsto oo. Asiseasily seen by comparing ?5000,?20000, and 

?100000, the error decreases like C/y/n. Therefore, it is natural to try to check experimentally 
if the central limit theorem is satisfied in n, the number of particles. To do so, we choose b = 0 
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-2 -1 0 1 2 

-2-10 1 

Figure 1 : Convergence in distribution of the stress y/?x" with respect to n. From left to right, and top to 

bottom we have n = 1000, n = 5000, n = 20 000, and n = 100 000. 

and D ? I ? a/2/2, and initialize the particles with the first example of a steady distribution, 
which is such that 

/ Jr 
xp(x) dx ? 0. 

For K = 100 and different values of n, in Figure 1 we plot the histogram of y/nx(,n, 1 
< j < M, 

on the interval [?2.5Sn,2.5Sn], where 

sl = 
(A?-1) 

M 
-n,2 

EW,n 
- ̂ 

Jy=l 

with rf7 
= (l/M) J2j-\ T(,n^1S an estimator of n var(r"). We compare this histogram with the 

centered Gaussian density with variance S2. We have n var(rf2) 
= (l/n) var(^"=1 ?y ), and 

Table 2 shows numerical convergence of this quantity as n -> oo, despite the lack of theoretical 

proof. 
The graphical representation in Figure 1 illustrates the convergence in law of the sequence 

y/nx" towards the Gaussian distribution. 

4.2. Convergence with respect to K, the number of time-steps 
To investigate the influence of K, we choose b = 0 and D = 1 ? a/2/2, and initialize the 

particles with the nonequilibrium density of 2\G\ \ 
? 

3|G2|, where G\ and G2 are independent, 
normal variables. For fixed n = 1000 and for T = 1, we approximate E(r") by the Monte 
Carlo method over M = 100 000 independent trajectories for different values of K. In Table 3 
we display results showing the convergence of the approximation x\ 

= (l/M) Yl!f=\ x\ 
'" ?f 

E(rf) with^. 
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Table 3: Convergence of rj7 with K. 

Number of time steps (/?) Stress Variance Confidence intervals at 95% 

2 
4 
8 
16 

100 

-0.2062 0.0018 

-0.2582 0.0022 

-0.2801 0.0023 

-0.2898 0.0024 

-0.2981 40.0025 

[-0.2065, -0.2060] 

[-0.2585, -0.2579] 

[-0.2804, -0.2798] 

[-0.2901,-0.2895] 

[-0.2984, -0.2978] 

f\ -0.25 

-0.30 

Figure 2: Convergence of the stress with K. 

The graphical representation in Figure 2 shows that, despite the lack of theoretical study of 
the weak convergence of the discretization scheme, f" converges like C/K with K. 

5. Conclusion 

The propagation-of-chaos theorem proved in the present paper provides a theoretical basis 

for the practical simulation of the average stress, which is of interest in physics. Some first 
numerical tests are completely conclusive with respect to the convergence and seem promising 
with respect to the rate of convergence. From a theoretical point of view, the next question is 

now to investigate the latter subject. 
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